A=2+2*2+.......+2*2*2*2*2*2*2*2*2*2
Giai ho minh nha !!!!!
cho a+b+ab=3.tim gtnn cua m=a^2+b^2
giai nhanh giup mik nhe:(
Tinh P giup minh voi : P = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+3+...+16) . Ban nao lam duoc thi giup minh nha . Minh se tick ung ho .
Bai 5
1/ Tim GTNN : A= x^2+3x+2
2/Tim x,y biet:
a/x^2-4x+y^2+2y+5=0
b/2x^2+y^2-2xy+10x+25=0
Giai ho minh bai 1,2,3,4,5 nhe !!! Minh dang len tren dien dan roi day !!!!
Minh can gap !!! Camon may ban tr'c nha
\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !
Mih nhầm nhá, câu a là -1/4 cơ nha bạn
phan a nghia la so nao la 1 thi thay bang 1/4 a ???
Rut gon:
A=(x-2)^2-(2x+1)^2
B=(x-2y)^2-(x-2y) .(2y+x)
C=(x+1)^3-(x-2)^3
D=(x-1)^2-2(x-1)(x+1)+(x+1)^2
E=(x+2y)^2+2(x+2y)(x-2y)+(2y-x)
G=(2x+1)^3-(2x-1)
Giai het ho minh nha! Minh dang can gap
\(A=\left(x-2\right)^2-\left(2x+1\right)^2=x^2-4x+4-4x^2-4x-1=-3x^2+3=-3\left(x^2-1\right)\)
\(=-3\left(x-1\right)\left(x+1\right)\)
\(B=\left(x-2y\right)^2-\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(x-2y-x-2y\right)=-4y\left(x-2y\right)\)
\(C=\left(x+1\right)^3-\left(x-2\right)^3=\left(x^3+3x^2+3x+1\right)-\left(x^3-6x^2+12x-8\right)\)
\(=x^3+3x^2+3x+1-x^3+6x^2-12x+8=9x^2-9x+9=9\left(x^2-x+1\right)\)
\(D=\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2=\left(x-1-x-1\right)^2=-2^2=4\)
\(E=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+2y-x=x^2+4xy+4y^2+2\left(x^2-4y^2\right)+2y-x\)
\(=x^2+4xy+4y^2+2x^2-8y^2+2y-x=3x^2-4y^2+4xy+2y-x\)
\(G=\left(2x+1\right)^3-\left(2x-1\right)=8x^3+12x^2+6x+1-2x+1=8x^3+12x^2+4x+2\)
\(=2\left(4x^3+6x^2+2x+1\right)=2\left(4x\left(x+1\right)^2+1\right)\)
a=2^100 - 2^99 - 2^98 - ... - 2^2 - 2
ho minh voi ai nhanh minh tich cho
Bn vào đây nè :
https://olm.vn/hoi-dap/question/109225.html
Học tốt
a(b^2-c^2)+b(c^2-a^2)+c(a^2-B^2) AI LM HO MINH CAI KHO QUA
giai ho minh nha
Tim x , y , z
|x-2/5|+|2y+3|+(z-2)2=0
Vì \(\left|x-\frac{2}{5}\right|\ge0;\left|2y+3\right|\ge0;\left(z-2\right)^2\ge0\)
=> \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)
Mà theo đề bài: \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
=> \(\begin{cases}\left|x-\frac{2}{5}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy \(x=\frac{2}{5};y=-\frac{3}{2};z=2\)
Ta có :
\(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
Vì \(\begin{cases}\left|x-\frac{2}{5}\right|\ge0\\\left|2y+3\right|\ge0\\\left(z-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy .................
Rut gon bieu thuc :
E = 2100 - 299 + 298 - 297 + ... + 22 - 21
Giai gium minh nha cac ban con ai la Giao vien thi lam ho em a !
bai 1 cmm hang dang thuc
a,(a+b+c)^2 +a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2
b, x^4+x^4+(x+y)^4=2(x^2+xy+y^2)^2
giAI HO MINH NHE NHANH LEN MINH DANG GAP
aVT=.\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
=\(a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
=\(2a^2+2b^2+2c^2+2ab+2ac+2bc\)
VP=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)=\(a^2+2ab+b^2+b^2+2bc+b^2+a^2+2ac+c^2\)
=\(2a^2+2b^2+2c^2+2ab+2bc+2ac\)
Vậy VT=VP
a)\(\text{(a+b+c)^2 +a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2}\)
Ta có:
\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) Câu b sao chỉ có một vế vậy , hằng đẳng thức thì phải có hai vế chứ
b) \(\text{x^4+y^4+(x+y)^4=2(x^2+xy+y^2)^2}\)
Ta có:
\(x^4+y^4+\left(x+y\right)^4=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(2x^4+2y^{\text{4}}+4x^3y+6x^2y^2+4xy^3=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)
\(=2\left[\left(x^2\right)^2+\left(y^2\right)^2+\left(xy\right)^2+2x^2.y^2+2y^2.xy+2x^2.xy\right]\)
\(=2\left(x^2+xy+y^2\right)^2\)
Vậy \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)