Chứng minh rằng\(\frac{1}{3}\)+ \(\frac{1}{30}\) + \(\frac{1}{32}\) + \(\frac{1}{35}\) + \(\frac{1}{45}\) + \(\frac{1}{47}\) + \(\frac{1}{50}\) < \(\frac{1}{2}\)
\(CMR:\frac{1}{3}+\frac{1}{30}+\frac{1}{32}+\frac{1}{45}+\frac{1}{47}+\frac{1}{50}< \frac{1}{2}\)
Chứng minh rằng:
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
Trả lời
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)
\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}\)
\(\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\left(đpcm\right)\)
1/2 lớn hơn
vì phân số 1/2 có mẫu số nhỏ hơn các phân số kia nên phân số 1/2 sẽ lớn hơn các phân số kia
Chứng minh rằng:
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\le\frac{1}{2}\)
Chứng minh rằng:\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{49}+\frac{1}{50}=\frac{91}{50}-\frac{97}{49}+\frac{95}{48}-\frac{93}{47}+.....+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}=1\)
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{8}\right)-\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
Chứng minh rằng:
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)
Ta có: Gọi dãy số cần chứng minh là A
\(A<\frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)
\(A<\frac{1}{3}+\frac{3}{30}+\frac{4}{60}\)
\(A<\frac{10}{30}+\frac{3}{30}+\frac{2}{30}\)
\(A<\frac{15}{30}=\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
k nha
Chứng minh rằng:
\(T=\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}
\(T=\left(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)
\(T
Chứng minh:
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
Ta thấy: \(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}< \frac{1}{30}\)
\(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\)
\(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{45}\)
\(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)
Do đó: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}\cdot3+\frac{1}{45}\cdot3=\frac{1}{2}\)
chứng minh:
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)
Đặt A = 1/3 + 1/31 + 1/35 + 1/37 + 1/53 + 1/61
A < 1/3+ ( 1/30+1/30+1/30)+( 1/45+1/45+1/45)
A < 1/3+1/10+1/15
A < 1/2
Chứng tỏ 1/3+1/31+1/35+1/37+1/53+1/61<1/2
k nhé, ủng hộ k, mk trả lời đầu tiên đó
chứng minh rằng\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \)\(\frac{1}{2}\)
CÁC BẠN GIẢI RÕ GIÙM MK NHÉ, AI NHANH NHÂT VÀ CHÍNH XÁC NHẤT MK NHẤT ĐỊNH SẼ K CHO !!!
Ta có:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)\(< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)\(=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy ............
Ta có: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 3/31 + 3/47 < 1/3 + 3/30 + 3/45
= 1/3 + 1/10 + 1/15 = 1/3 + (1/30) * (3+2) = 1/3 + (1/0) * 5 = 1/3 + 1/6
= (1/6) * (2+1) = (1/6) * 3 = 1/2.
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/2.
Ủng hộ mk nha mina^^
cac ban cho mk biet tai sao lai co phan so \(\frac{1}{30};\frac{1}{45}\)vay ???