Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn Thị Hồng Ngọc
Xem chi tiết
Lê Thái Thảo Nghi
Xem chi tiết
Trần Việt Hoàng
28 tháng 1 2016 lúc 17:19

bằng cách lấy ví dụ ra và..........!!!!!!!!!!!!!!!!!

van anh ta
28 tháng 1 2016 lúc 17:27

n = 1 , tick nha

Leuyenhu_
Xem chi tiết
wattif
6 tháng 3 2020 lúc 14:24

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/85334930887.html

Khách vãng lai đã xóa
Ran
Xem chi tiết
Bùi Đăng Minh
Xem chi tiết
NGUYỄN THẾ HIỆP
25 tháng 2 2017 lúc 22:42

Đặt d=UC(32n+4,36n+9)

=> \(\hept{\begin{cases}32n+4⋮d\\36n+9⋮d\end{cases}\Rightarrow}8\left(36n+9\right)-9\left(32n+4\right)⋮d\Leftrightarrow36⋮d\)

=> d=1,2,3,6,12,18,36

Ta thấy: 36n+9 không chia hết cho 2 => d=1,3

Để phân số tối giản d\(\ne\)3

mà 36n+9 chia hết cho 3

=> 32n+4 không chia hết cho 3 hay 2n+1 không chia hết cho 3 

=> \(\orbr{\begin{cases}2n+1=3k+1\\2n+1=3k+2\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=\frac{3k}{2},k_{ }chẵn\\n=\frac{3k+1}{2},k_{ }lẻ\end{cases}}\)

Vậy với n=... thì phân số tối giản

Nguyễn Minh Hiền
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Đoàn Trần Quỳnh Hương
28 tháng 1 2023 lúc 9:55

Gọi d là ƯCLN của (36n+4,8n+1) 

Khi đó :36n+4 chia hết cho d

8n + 1 chia hết cho d

Xét hiệu  2.(36n + 4) - 9.(8n + 1) chia hết cho d

= 72n+ 8 - 72 n - 9 chia hết cho d

= 8 - 9 chia hết cho d

= -1 chia hết cho d

=> đcpcm

nguyễn tiến khánh thiện
28 tháng 1 2023 lúc 10:47

gọi d là ước chung của(36n+4; 8n+1)

36n+4 chia hết cho d suy ra 2(36n+4)chia hết cho d

8n+1 chia hết cho d suy ra 9(8n+1)chia hết cho d

⇔(72n+8)- (72n+9)⋮d

⇔72n+8-72n+9⋮d

⇔8-9⋮d

⇔d=1

Vậy đcpcm

nguyễn tiến khánh thiện
28 tháng 1 2023 lúc 10:49

Cho mình thêm chỗ này :vậy 36n+4;8n+1 là hai số nguyên tố cùng nhau 

Vậy đpcm

Nguyễn Minh Sơn
Xem chi tiết
Ribi Nguyển
9 tháng 4 2018 lúc 19:29

mình cũng đang hỏi câu này nè

Nguyễn Việt Tiến
25 tháng 2 2023 lúc 20:11

=1

 

Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa