Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bích Hằng
Xem chi tiết
alibaba nguyễn
27 tháng 7 2017 lúc 14:52

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vô bài toán được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}\)

Minh Hiền
Xem chi tiết
Tạ Duy Phương
30 tháng 11 2015 lúc 12:19

Với mọi số nguyên dương n ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

Ta có: \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}}\)

\(\Rightarrow\frac{1}{\left(n+1\right)\sqrt{n}}<\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\frac{2}{\sqrt{n}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\). Do đó ta có:

\(A<\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+...+\frac{2}{\sqrt{2015}}-\frac{2}{\sqrt{2016}}=2-\frac{2}{\sqrt{2016}}<2\)

Vậy A < 2.

An Nguyễn Hoài
Xem chi tiết
Đức Ngô
Xem chi tiết
Minh Triều
7 tháng 7 2016 lúc 22:00

Với mọi n>0 ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng đẳng thức trên vào D ta được:

\(D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}=1-\frac{\sqrt{2016}}{2016}=\frac{2016-\sqrt{2016}}{2016}\)

Nguyen Thi Phung
Xem chi tiết
Tuyển Trần Thị
23 tháng 6 2017 lúc 18:43

\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\) 

                                                 =\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)

                                                    =\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

                       =\(1-\frac{1}{\sqrt{2016}}\)

   đến đây cậu tự giải nốt nhé

Nguyễn Bảo Hân
23 tháng 6 2017 lúc 15:39

bạn coi thử sách VHB đi hình như có đấy

Nguyen Thi Phung
23 tháng 6 2017 lúc 15:41

mình ko có sách đấy 

Thanh Tâm
Xem chi tiết
Đặng Tiến
Xem chi tiết
Đinh Thùy Linh
22 tháng 6 2016 lúc 18:24

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{2-1}{1+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+\frac{4-3}{\sqrt{3}+\sqrt{4}}+...+\frac{2016-2015}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{\left(\sqrt{2}\right)^2-1}{1+\sqrt{2}}+\frac{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}\right)^2-\left(\sqrt{3}\right)^2}{\sqrt{3}+\sqrt{4}}+...+\frac{\left(\sqrt{2016}\right)^2-\left(\sqrt{2015}\right)^2}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{1+\sqrt{2}}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{3}+\sqrt{4}}+...=.\)

\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2016}-\sqrt{2015}\)

\(=\sqrt{2016}-1\). đpcm

kagamine rin len
22 tháng 6 2016 lúc 21:48

\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)

đkxđ x>=2,x>0

\(\frac{3}{2}\sqrt{4\left(x-2\right)}-9\sqrt{\frac{x-2}{81}}=6\)

đặt t=x-2

\(\frac{3}{2}\sqrt{4t}-9\sqrt{\frac{t}{81}}=6\)

\(\frac{3}{2}.2\sqrt{t}-9\frac{\sqrt{t}}{9}=6\)

\(3\sqrt{t}-\sqrt{t}=6\)

\(2\sqrt{t}=6\)

\(\sqrt{t}=3=>t=9\)

thế t vào x-2 ta được 

x-2=9<=> x=11 (thỏa)

S={11}

Nguyễn Anh Sơn
Xem chi tiết
Phạm Ngọc Thạch
8 tháng 6 2017 lúc 20:54

Bài này dài lắm, mình học qua rùi cũng bỏ xó luôn ....... Ko biết còn quyển vở ko để xem lại

Nguyễn Anh Sơn
8 tháng 6 2017 lúc 21:00

giúp đi

s2 Lắc Lư  s2
8 tháng 6 2017 lúc 21:37

Giải tổng quát nha : 

\(\frac{1}{x\sqrt{x+1}+\left(x+1\right)\sqrt{x}}=\frac{1}{\sqrt{x\left(x+1\right)}\left(\sqrt{x}+\sqrt{x+1}\right)}=\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x\left(x+1\right)}}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\)

nguyễn đình thành
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 9 2016 lúc 8:10

Xét \(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{1}{k-1}-\frac{1}{k}-\frac{1}{k\left(k-1\right)}\right)=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

Áp dụng với k = 3 , 4 , ... , 2016 được

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2015}-\frac{1}{2016}\)

\(=2014+\frac{1}{2}-\frac{1}{2016}\)

Ashshin HTN
16 tháng 9 2018 lúc 20:27

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50