Tìm tất cả số dương a,b,c thoả mãn 1/a + 1/b+1/c=2.
Mọi người giúp tớ với ạ! cảm ơn mọi người nhiều
1. Cho a,b,c>0 thỏa mãn điều kiện: a+b+c=1. Tìm GTNN của biểu thức:
P=(a+1/a)^2 +(b+1/b)^2+(c+1/c)^2.
Mọi người giải giúp em với ạ. Em cảm ơn rất nhiều
Bài 1: Cho đa thức G(x)= a.x2+b.x+c (a, b, c là các hệ số)
a, Hãy tính G(-1) biết a+c=b - 8.
b, Tìm a, b, c biết: G(0)=4, G(1)= 9, G(2)=14.
Mọi người giúp mình với ạ. Mình cảm ơn mọi người nhiều.
cho số nguyên dương a,b,c. CMR \(a+b+2\sqrt{ab+c^2}\)không thể là số nguyên tố.
Giúp em với mọi người ơi. cảm ơn mọi người nhiều lắm ạ
Để cho \(a+b+2\sqrt{ab+c^2}\)là xô nguyên tô thì trươc hêt \(\sqrt{ab+c^2}\)phải là xô nguyên đã.
\(\Rightarrow ab+c^2=d^2\)
\(\Leftrightarrow ab=\left(c+d\right)\left(c-d\right)\)
\(\Rightarrow\)a, b phải cùng tinh chẵn lẻ.
Ta thây rằng a, b cùng tinh chẵn lẻ thì
\(a+b+2\sqrt{ab+c^2}\) chia hêt cho 2
Lại co: \(a+b+2\sqrt{ab+c^2}>2\)
Vậy \(a+b+2\sqrt{ab+c^2}\) không thể là xô nguyên tô được.
Bài trên chỗ \(\left(c+d\right)\left(c-d\right)\)xửa lại thành \(\left(c+d\right)\left(d-c\right)\)lỡ tay bâm nhầm.
Để cho \(a+b+2\sqrt{ab+c^2}\) là xô nguyên tố thì trước hết \(\sqrt{ab+c^2}\)phải là xô nguyên đã.
\(\Rightarrow ab+c^2=d^2\)
\(\Leftrightarrow ab=\left(c+d\right)\left(d-c\right)\)
\(\Rightarrow a,b\)phải cùng tính chẵn lẻ.
Ta thấy rằng \(a,b\)cùng tính chẵn lẻ thì:
\(a+b+2\sqrt{ab+c^2}\)chia hết cho 2.
Lại có: \(a+b+2\sqrt{ab+c^2}>2\)
Vậy \(a+b+2\sqrt{ab+c^2}\)không thể xô nguyên tố được.
cho số nguyên dương a,b,c. CMR a+b+2√ab+c2 không thể là số nguyên tố.
Giúp em với mọi người ơi. cảm ơn mọi người nhiều lắm ạ
Minh Chương
Kết bạn
Hoạt độngBạn bèTủ sáchCho 3 số thực dương a,b,c thỏa mãn:\(a^2+b^2+c^2=3\). Chứng minh:\(\frac{1}{\sqrt{1+8a^3}}+\frac{1}{\sqrt{1+8b^3}}+\frac{1}{\sqrt{1+8c^3}}\)lớn hơn hoặc bằng 1,
mọi người giúp em với ạ, em cảm ơn nhiều, em đang cần gấp. trả lời đi rồi em vào wall like cho hết ạ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ap dung bdt am gm
\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)
\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)
tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)
\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)
tiep tuc ap dung bat cauchy-schwarz dang engel ta co
\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)
dau = xay ra \(\Leftrightarrow a=b=c=1\)
Với các số dương a, b thỏa mãn: (2a-1)2 + (2b-1)2 = 2
Tìm giá trị nhỏ nhất của biểu thức P = a4 + b4 + 2020/(a+b)2
Mong mọi người giúp mình câu này ạ, càng chi tiết càng tốt. Mình xin cảm ơn
tìm tất cả các số tự nhiên sao cho tích (a+1).(b-1)=20. Cảm ơn mọi người ạ
20 = 1.20 = 20.1 = 4.5 = 5.4 = 2.10 = 10.2
Ta lập bảng sau:
Cho các số nguyên a,b,c,d thỏa mãn các điều kiện:
a-c=d-b và ab+1. Chứng tỏ rằng c=d
MIK CẦN GẤP Ạ! MONG MỌI NGƯỜI GIÚP ĐỠ! CẢM ƠN NHIỀU<3
1.Tìm các số a, b, c biết: \(a^2\)+ 4b+ 4 = 0; \(b^2\)+ 4c + 4 = 0 và \(c^2\) + 4a + 4 = 0
2.Cho ab+bc+ca = abc, a+b+c =0 .Tính \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)
mong mọi người giải giúp vs ạ! Em cảm ơn nhiều
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`