Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shoppe pi pi pi pi
Xem chi tiết
Lorina Macmillan
Xem chi tiết
Nhật Hạ
Xem chi tiết
Kiệt Nguyễn
20 tháng 9 2020 lúc 7:22

a) \(ĐK:x\ge0,x\ne9\)

Với\(x\ge0,x\ne9\)thì \(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left[\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right]\)\(=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left[\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right]\)\(=\left[\frac{2x-6\sqrt{x}}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3\sqrt{x}+9}{x-9}\right]:\left[\frac{\sqrt{x}+1}{\sqrt{x}-3}\right]\)\(=\left[\frac{3x-6\sqrt{x}-9}{x-9}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-9\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)

b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

Mà \(\sqrt{x}+3>0\)nên \(4\sqrt{x}-6< 0\Leftrightarrow\sqrt{x}< \frac{3}{2}\Leftrightarrow x< \frac{9}{4}\)

Vậy với \(0\le x< \frac{9}{4}\)thì B < -1

c) \(B=\frac{4\sqrt{x}-6}{\sqrt{x}+3}=\frac{4\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=4-\frac{18}{\sqrt{x}+3}\)

Ta có: \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\frac{18}{\sqrt{x}+3}\le6\Leftrightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Leftrightarrow4-\frac{18}{\sqrt{x}+3}\ge-2\)

Vậy \(MinB=-2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Inequalities
20 tháng 9 2020 lúc 10:55

Nhìn nhầm câu c)

\(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)làm tương tự

Khách vãng lai đã xóa
le thi khanh huyen
Xem chi tiết
Không Tên
14 tháng 7 2018 lúc 21:55

a) ĐKXĐ:  \(x\ge0;x\ne9\)

mk chỉnh lại đề bài nhé, chắc có lẽ bn ghi nhầm:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3}{\sqrt{x}+3}\)

Nguyễn Thị Thanh Lương
Xem chi tiết
Ashshin HTN
5 tháng 7 2018 lúc 6:59

ai h dung minh giai cho

Nhật Hạ
Xem chi tiết
Nguyễn Minh Đăng
20 tháng 9 2020 lúc 8:17

a) đk: \(x\ge0;x\ne9\)

Ta có:

\(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]\div\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\sqrt{x}-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(B=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(B=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(B=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)

b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\) , mà \(\sqrt{x}+3\ge3>0\left(\forall x\right)\)

=> \(4\sqrt{x}-6< 0\)

\(\Leftrightarrow4\sqrt{x}< 6\)

\(\Rightarrow\sqrt{x}< \frac{3}{2}\)

\(\Rightarrow x< \frac{9}{4}\)

Vậy \(0\le x< \frac{9}{4}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
20 tháng 9 2020 lúc 9:20

c) Ta có: \(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=3-\frac{18}{\sqrt{x}+3}\)

Vì \(\sqrt{x}+3\ge3\Rightarrow\frac{18}{\sqrt{x}+3}\le6\)

\(\Leftrightarrow3-\frac{18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi: \(\sqrt{x}+3=3\Rightarrow x=0\)

Vậy \(Min_A=-3\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Nguyễn Minh Khánh
Xem chi tiết
Nguyễn Công Tỉnh
15 tháng 7 2019 lúc 21:14

\(C=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x-\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) (tự tìm ĐKXĐ)

\(=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}-1\right)+2\left(\sqrt{x}+1\right)\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}+1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+3\)

GTNN:\(x-\sqrt{x}+3=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

\(\Rightarrow Min\left(C\right)=\frac{11}{4}khi..\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

Nguyễn Thị Ngọc Mai
Xem chi tiết
Trịnh Trọng Khánh
Xem chi tiết
Phạm Thị Huệ
25 tháng 10 2016 lúc 18:04

\(C=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{3x+3}{9-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{1}{2}\right)\) ĐK \(x\ge0;x\ne9\)

\(C=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)}-\frac{1\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)}\right)\)

\(C=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\right)\)

\(C=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{2\left(\sqrt{x}-3\right)}\)

\(C=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) x \(\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(C=\frac{-6}{\sqrt{x}+3}\)

b: ta có \(C=\frac{-6}{\sqrt{x}+3}\)\(C=\frac{1}{2}\)

\(\frac{-6}{\sqrt{x}+3}=\frac{1}{2}\)

\(-12=\sqrt{x}+3\)

\(\sqrt{x}=-15\)(Loại)

=> x không có giá trị nào để C=\(\frac{1}{2}\)