C=(1+1/1.3)(1+1/2.4)(1+1/3.5)(1+1/4.6)....(1+1/98.100)
1/1.3-1/2.4+1/3.5+1/4.6+...+1/97.99-1/98.100 = ?
1/1.3-1/2.4+1/3.5-1/4.6+...+1/97.99-1/98.100 = ?
=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100
=1-1/2-1/99-1/98=2327/4851
1/1.3 - 1/2.4 + 1/3.5 - 1/4.6+.....+1/97.99-1/98.100
\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)
\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)
\(=\frac{2327}{4851}\)
Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100
4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100
=(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)
=(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)
=(1/1-1/99)-(1/2-1/100)
4A=98/99 - 99/100
A= (98/99-99/100) :4
ngắn gọn nhất nè
1/1.3-1/2.4+1/3.5-1/4.6+...+1/97.99-1/98.100
= 1- 1/3 - 1/2 + 1/4 + 1/3 - 1/5 - 1/4 + 1/6 + ... + 1/97 - 1/99 - 1/98 + 1/100
= 1 - 1/2 - 1/99 - 1/98
= 2327/4851
Cho A = 1/1.3 + 1/2.4 + 1/3.5 + 1/3.5 + 1/4.6 + ... + 1/98.100 .Chứng tỏ A < 3/4
chứng minh rằng:1/1.3 + 1/2.4 + 1/3.5 + 1/4.6 +....+ 1/97.99 + 1/98.100 < 3/4
Tìm x biết 1/1.3 - 1/2.4 + 1/3.5 - 1/4.6 + ...+ 1/97.99 - 1/98.100 + 3lxl = 1
1/1.3 - 1/2.4 + 1/3.5 - 1/4.6 + ...+ 1/97.99 - 1/98.100 + 3lxl = 1
tách ra trc đầu tiên tính phần : 1/1.3 - 1/2.4 + 1/3.5 - 1/4.6 + ...+ 1/97.99 - 1/98.100
tách số lẻ và số chẵn ra
(1/1.3+1/3.5+...+1/57.97+1/97.99)-(1/2.4+1/4.6+...1/98.100)
tính từng vế vế đầu kết qu3 vế lẻ là : 49/99
kết quả vế chẵn là 49/200
thì bài đó sẻ thành : 49/99+49/200+3lxl=1
còn lại tự tinh nha
chứng minh rằng 1^1.3 + 1^2.4 + 1^3.5 + 1^4.6 +...+ 1^97.99+ 1^98.100 < 3^4
Chứng minh rằng: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{97.99}+\frac{1}{98.100}< \frac{3}{4}\)
1/1.3+1/2.4+1/3.5+.....+1/97.99+1/98.100-49/99=
Ta viết lại tổng này thành:
\(P=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{98.100}\right)-\dfrac{49}{99}\)
\(P=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}\right)+\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{98.100}-\dfrac{49}{99}\right)\)
\(P=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)
\(P=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)
\(P=\dfrac{1}{2}-\dfrac{1}{198}+\dfrac{1}{4}-\dfrac{1}{200}-\dfrac{49}{99}\)
\(P=\dfrac{49}{200}\)