phân tích thành nhân tử
\(x^3-6x^2-x+30\)
Phân tích đa thự thành nhân tử
\(x^3-6x^2-x+30\)
x3 - 6x2 - x + 30
= (x + 2).x2 - 6x2 - x + 30/x + 2
= x2 - 8x + 15
= (x + 2)(x - 3)(x - 5)
\(x^3-6x^2-x+30\)
\(=\left(x^3-8x^2+15x\right)+\left(2x^2-16x+30\right)\)
\(=x\left(x^2-8x+15\right)+2\left(x^2-9x+15\right)\)
\(=\left(x^2-8x+15\right)\left(x+2\right)\)
\(=\left(x^2-3x-5x+15\right)\left(x+2\right)\)
\(=\left[x\left(x-3\right)-5\left(x-3\right)\right]\left(x+2\right)\)
\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử:
\(x^3-6x^2-x+30\)
\(\Leftrightarrow x^3-3x^2-3x^2+9x-10x+30\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)-10\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x-10\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)\left(x+2\right)\)
phân tích đa thức thành nhân tử:
\(x^3+6x^2-x-30\)
\(=\left(x^3-2x^2\right)+\left(8x^2-16x\right)+\left(15x-30\right)\)
\(=x^2\left(x-2\right)+8x\left(x-2\right)+15\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+8x+15\right)\)
\(=\left(x-2\right)\left(x^2+3x+5x+15\right)\)
\(=\left(x-2\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)
\(=\left(x-2\right)\left(x+3\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử:
\(x^3-6x^2-x+30\)
x3-6x2-x+30
=x3-5x2-x2+5x-6x+30
=(x-5)(x2-x-6)
=(x-5)(x-3)(x+2)
\(x^3-6x^2-x+30=x^3-3x^2-3x^2+9x-10x+30.\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)-10\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x-10\right)\)
\(=\left(x-3\right)\left(x^2+2x-5x-10\right)\)
\(=\left(x-3\right)\left[x\left(x+2\right)-5\left(x+2\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x-5\right)\)
Vậy \(x^3-6x^2-x+30=\left(x-3\right)\left(x+2\right)\left(x-5\right)\)
cái này bạn hỏi rồi mà mk đã tl rồi đó bạn ấn vô câu hỏi của tôi rồi kéo xuống mà xem
Bài tập : Phân tích đa thức thành nhân tử
a, x^3-7x+6
b, x^3-9x^2+6x+16
c, x^3-6x^2-x+30
d, 2x^3-x^2+5x+3
a) x3 - 7x + 6
= x3 - 2x2 + 2x2 - 4x - 3x + 6
= x2 ( x - 2 ) + 2x ( x - 2 ) - 3 ( x - 2 )
= ( x - 2 ) ( x2 + 2x - 3 )
= ( x - 2 ) ( x2 - x + 3x - 3 )
= ( x - 2 ) [ x ( x - 1 ) + 3 ( x - 1 ) ]
= ( x - 2 ) ( x - 1 ) ( x + 3 )
b ) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
= ( x - 8 ) ( x2 + x - 2x - 2 )
= ( x - 8 ) [ x ( x + 1 ) - 2 ( x + 1 ) ]
= ( x - 8 ) ( x + 1 ) ( x - 2 )
c ) x3 - 6x2 - x + 30
= x3 - 5x2 - x2 + 5x - 6x + 30
= x2 ( x - 5 ) - x ( x - 5 ) - 6 ( x - 5 )
= ( x - 5 ) ( x2 - x - 6 )
= ( x - 5 ) ( x2 - 3x + 2x - 6 )
= ( x - 5 ) [ x ( x - 3 ) + 2 ( x - 3 ) ]
= ( x - 5 ) ( x - 3 ) ( x + 2 )
d ) 2x3 - x2 + 5x + 3
= 2x3 + x2 - 2x2 - x + 6x + 3
= x2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )
= ( 2x + 1 ) ( x2 - x + 3 )
Phân tích đa thức thành nhân tử:
a. x3-6x2-x+30
b. 2x3+x2+5x+3
\(^{x^3-6x^2-x+30=x^3-5x^2-3x^2+15x-2x^2-10x-6x+30}\)
=x^2(x-5)-3x(x-5)-2x(x-5)-6(x-5)
=(x-5)(x^2-3x-2x-6)
=(x-5)[x(x-3)-2(x-3)]
=(x-5)(x-3)(x-2)
\(x^3-6x^2-x+30\)
= \(x^3-5x^2-3x^2+15x+2x^2-10x-6x+30\)
= \(x^2\left(x-5\right)-3x\left(x-5\right)+2x\left(x-5\right)-6\left(x-5\right)\)
= \(\left(x-5\right)\left(x^2-3x+2x-6\right)\)
= \(\left(x-5\right)\left(x\left(x-3\right)+2\left(x-3\right)\right)\)
= \(\left(x-5\right)\left(x+2\right)\left(x-3\right)\)
Phân tích đa thức thành nhân tử:
a. x3-6x2-x+30
b. 2x3+x2+5x+3
a)\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x^2-5x-3x+15\right)\)
\(=\left(x+2\right)\left[x\left(x-5\right)-3\left(x-5\right)\right]\)
\(=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
nha
phân tích đa thức thành nhân tử bằng pp tách
c, x3-6x2+x+30
d, x2+x-x+2
Phân tích đa thức thành nhân tử
a)x3-9x2+6x+16
b)x3-6x2-x+30
a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)
kl: ...
b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
kl:....
a, \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)
\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b, \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-6\right)\)
\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)
\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)
\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)
Chúc bạn học tốt!!!