Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Nguyễn Tú Nhi
Xem chi tiết
nguyễn minh châu
Xem chi tiết
Nguyễn Thị BÍch Hậu
18 tháng 6 2015 lúc 13:56

a, gọi là A đi. \(A=6x^2+19x-7-6x^2-x-5-18x+12=5\)=> giá trị của A không phụ thuộc vào biến

b) \(B=x^4+x^3y+x^2y^2+xy^3-yx^3-x^2y^2-xy^3-y^4-x^4+y^4=0\)=> không phụ thuộc vào biến

câu b thì vế đầu nó là một hằng đẳng thức luôn rồi. là x^4-y^4. nhưng là hằng đẳng thức mở rộng nên chị mới làm tách hẳn ra. nếu em biết thì có thể làm nhanh hơn 

tat thang nguyen
Xem chi tiết
lan anh Vu
7 tháng 7 2016 lúc 21:43

a, tính cụ thể ra ta có : 6X2 -2X-6X2-6X-3+8X= -3

b, tương tự câu trên ta có X-1/5 -1/3 X-2+2 - 2/3 X= -1/5

Cold Wind
7 tháng 7 2016 lúc 21:39

a,2x.(3x-1)-6x.(x+1)-(3-8x)

= 6x^2 - 2x - 6x^2 - 6x - 3 +8x

= -3

Vậy giá trị của đa thức trên không phụ thuộc biến x.
b,0,2.(5x-1) - 1/2.(2/3x+4) + 2/3.(3-x)

= x - 0,2 - 1/3x - 2 + 2 -2/3x

= -0,2

Vậy giá trị của biểu thức trên không phụ thuộc biến x

tat thang nguyen
7 tháng 7 2016 lúc 22:03

cảm ơn các bạn


 

hokage anhxuan
Xem chi tiết
Trần Thị Diễm Quỳnh
27 tháng 7 2015 lúc 22:00

dat bieu thuc tren =A

ta co A=2x^2+3x-10x-15-2x^2+6x+x+7

       A=-8

voi moi gia tri cua x ta luon co A=-8

do đó gtri cua bt ko phu thuoc vao gtri cua bien

Chín Năm Kháng Chiến Bảo...
Xem chi tiết
hoàng thị hoa
Xem chi tiết
Nguyễn Lê Nhật Linh
31 tháng 5 2017 lúc 16:26

a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b) bạn rút gọn, biểu thức sẽ bằng 4 

=> giá tri của biểu thức sẽ không phụ thuộc vào biến x

hoàng thị hoa
31 tháng 5 2017 lúc 16:35

tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái

hokage anhxuan
Xem chi tiết
junpham2018
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Trần Thanh Phương
3 tháng 1 2019 lúc 17:01

a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)

b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)

\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)

\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)

\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)

\(B=4\)

Vậy với mọi giá trị của x thì B luôn bằng 4

Vậy giá trị của B không phụ thuộc vào biến ( đpcm )

shitbo
3 tháng 1 2019 lúc 17:07

\(Giải:\)

\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)

\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)

\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)

Dương Lam Hàng
3 tháng 1 2019 lúc 17:08

a) Biểu thức B xác định

Khi và chỉ khi \(x\ne\pm1\)

b) \(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)

         \(=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x^2-1\right)}{5}\)

        \(=\left[\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

          \(=\left[\frac{x^2+2x+1+6-\left(x^2-x+3x-3\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

           \(=\left[\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}\right].\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

          \(=\frac{10}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

           \(=\frac{10.4.\left(x-1\right)\left(x+1\right)}{2.5.\left(x-1\right)\left(x+1\right)}=4\)

Vậy giá trị của biểu thức không phụ thuộc vào biến x