Cho S=31.32.33...31998
Chứng minh S⋮26
S=3+32+3...+31998. chứng minh S chia hết cho 26
Cho A = 1.2.3......29.30
B = 31.32.33.......59.60
a) Chứng minh: B chia hết cho 230
b) Chứng minh: B - A chia hết cho 61
a.
\(B=(32.34.36...60)(31.33.35....59)\)
\(=(2.16.2.17.2.18...2.30)(31.33.35...59)\)
\(=2^{15}(16.17.18...30)(31.33.35...59)\)
\(=2^{15}(16.18...30)(17.19.21...29)(31.33.35...59)\)
\(=2^{15}(2.8.2.9....2.15)(17.19..29)(31.33...59)\)
\(=2^{15}.2^8(8.9.10...15)(17.19...29)(31.33...59)\)
\(=2^{23}(8.10.12.14)(8.11.13.15).(17.19...29)(31.33...59)\)
\(=2^{23}.(8.10.12.14).T=2^{23}(2^3.2.5.2^2.3.2.7).T\)
\(=2^{23}.(2^7.105)T=2^{30}.105T\vdots 2^{30}\)
b.
\(31\equiv -30\pmod {61}\)
\(32\equiv -29\pmod {61}\)
\(33\equiv -28\pmod {61}\)
...........
\(60\equiv -1\pmod {61}\)
$\Rightarrow 31.32....60\equiv (-30)(-29)(-28)..(-1)\pmod {61}$
Hay $B\equiv A\pmod {61}$
Hay $B-A\equiv 0\pmod {61}$
Tức là $B-A$ chia hết cho $61$
Cho A=1.2.3.....29.30 và B=31.32.33.....59.60. Chứng minh A-B chia hết cho 276
cho S =5+52+53+........+52006
a,tính S
b, chứng minh S chia hết cho 26
a, S = 5 + 52 + 53 +....+52006
S= (5+52+53+54+55+56) +.....+ ( 22001+52002+52003+52004+52005+52006)
S= 5 x ( 1+5+52+53+5455 ) +......+ 52001x (1+5+5 2+53+54+55)
S= 5 x 3906+.........+ 52001 x 3906
S = 3906x( 5+..+52001)
b, S = 3906 x ( 5+...+52001)
S = 126 x 3 x ( 5+...+52001)
=> S chia hết 126
s chia hết cho 126 mới đúng nếu không sẽ ra một kết quả sai
cho:
S= 3+3^2+3^3+..........+3^2016
Chứng minh rằng S chia hết cho 26
ta có: S=( 31+32+33+34+35+36)+...+32016
S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)
S= 31.364+...+ 32011.364
S= 364. ( 31+...+32011 )
S= 26.14.(31+...+32011) chia hết cho 26
vậy S chia hết cho 26
Cho : A = 31.32.33...60 . Chứng minh : A \(⋮\) 230
Mik ko giai nhung mik se noi cho bn ket qua:A\(⋮\)\(2^{30}\)
Trong B có
các số 32 ; 34 ; 36 ; 38 ; 40 ; 42 ; 44 ; 46 ; 48 ; 50 ; 52 ; 54 ; 56 ; 58 chia hết cho 2.
32 = 25
34 = 2.17
36 = 2².9
38 = 2.19
40 = 2³.523.5
…………….
Làm cứ thế mà ra tổng cộng 30 số 2
=) B chia hết cho 230
Cho S = 5 + 5 mũ 2 + 5 mũ 3 + ... + 5 mũ 96
a) Chứng minh : S chia hết cho 26
b) Tìm chữ số tận cùng của S
a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm
S = 5 + 52 + 53 +.....+ 596
S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)
S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)
S = 5.156 + 55.156 +.....+ 593.156
S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)
Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5
(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)
=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số
=> 5+55+...+593 có tận cùng là 5.24 = ...0
=> S = 156.(5+55+...+593)
=> S = 156.(...0)
=> S = (...0)
=> Chữ số tận cùng của S là 0
Câu b sai. Làm như sau mới đúng. số tận cùng của S là 5.
b, Có:
S =5+52+53+…+596
5S =5(5+52+53+…+596)
=52+53+54…+597
5S-S =(52+53+54…+597)-( 5+52+53+…+596)
4S =597-5
S =(597-5)/4
Mà 597-5=596.5-5=54.24.5-5=(54)24.5-5=62524.5-5=…0625.5-5=…3125-5=3120
S =…..3120/4
20 chia 4 =5. Vậy tận cùng của S là 5
S= a + 5 + 52 + 53 +...+ 596
chứng minh S chia hết cho 26
Cho mình hỏi S=5+52+53+..+596
hay là đề S= a + 5 + 52 + 53 +...+ 596
Nếu là đề: S=5+52+53+..+596
Ta có:S=5+52+53+..+596
S=(5+53)+(52+54)+...+(594+596)
S=5(1+52)+52(1+52)+...+593(1+52)
S=5.26+52.26+...+593.26
S=26.(5+52+..+593)\(⋮\)26
Cho S=3 + 32 + ... + 31997 + 31998
Chứng minh rằng S chia hết cho 26