Những câu hỏi liên quan
nguyễn công huy
Xem chi tiết
MARKTUAN
Xem chi tiết
Nguyễn Hồng Hà
Xem chi tiết
Kiệt Nguyễn
3 tháng 6 2020 lúc 16:34

Ta có: \(a^2-ab+3b^2+1=\left(a^2-2ab+b^2\right)+ab+\left(b^2+1\right)+b^2\)

\(=\left(a-b\right)^2+ab+\left(b^2+1\right)+b^2\ge ab+2b+b^2\)

\(=b\left(a+b+2\right)\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{1}{\sqrt{b\left(a+b+2\right)}}\)(1)

Tương tự: \(\frac{1}{\sqrt{b^2-bc+3c^2+1}}\le\frac{1}{\sqrt{c\left(b+c+2\right)}}\)(2); \(\frac{1}{\sqrt{c^2-ca+3a^2+1}}\le\frac{1}{\sqrt{a\left(c+a+2\right)}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3) và sử dụng AM - GM kết hợp liên tục BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta được:

\(P\le\frac{1}{\sqrt{b\left(a+b+2\right)}}+\frac{1}{\sqrt{c\left(b+c+2\right)}}+\frac{1}{\sqrt{a\left(c+a+2\right)}}\)

\(=\Sigma\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)\(\le\Sigma\left(\frac{1}{4b}+\frac{1}{a+b+2}\right)\)(AM - GM)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left(\frac{1}{a+b+2}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}\right)+\frac{1}{2}\right]\)

\(\le\frac{3}{4}+\text{​​}\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\text{​​}\Sigma\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

\(=\frac{3}{4}+\text{​​}\left[\frac{3}{8}+\text{​​}\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\le\frac{3}{4}+\frac{3}{8}+\frac{3}{8}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 6 2020 lúc 17:00

Dòng thứ 10 sửa lại cho mình là \(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{2}\right)\right]\)

Do olm có lỗi là mỗi lần bấm dấu ngoặc là số nó tự động nhảy ra ngoài

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
11 tháng 6 2020 lúc 11:12

Cách khác

Ta đi chứng minh \(\sqrt{ab+3b^2+1}\ge\frac{a+5b+2}{4}\)

\(\Leftrightarrow16\left(ab+3b^2+1\right)\ge\left(a+5b+2\right)^2\)

\(\Leftrightarrow13\left(a-b\right)^2+10\left(b-1\right)^2+2\left(a-1\right)^2\ge0\)  ( luôn đúng )

Khi đó \(P\le\frac{4}{a+5b+2}+\frac{4}{b+5c+2}+\frac{4}{c+5a+2}\)

\(\le\frac{1}{a+b+2}+\frac{1}{4b}+\frac{1}{b+c+2}+\frac{1}{4c}+\frac{1}{c+a+2}+\frac{1}{4a}\)

\(\le\frac{1}{16}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}+6\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\le\frac{12}{16}+\frac{3}{4}=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Trịnh Hoang Anh
Xem chi tiết
Nguyễn Anh Duy
19 tháng 7 2020 lúc 20:48

cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi

Bình luận (0)
Đoàn Hạ Vy
Xem chi tiết
Nguyễn Linh Chi
22 tháng 5 2020 lúc 21:28

Với mọi số thực  x; y; z ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) ( tự chứng minh xem; có thể áp dụng )

Ta có: \(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le3\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\left(a+b+c\right)=6\)

=> \(S\le\sqrt{6}\)

Dấu "=" xảy ra <=> a = b = c =1/3

Vậy max S = \(\sqrt{6}\) tại a = b = c = 1/3.

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
26 tháng 5 2020 lúc 17:30

đây nhé bạn

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Tuấn Anh
Xem chi tiết
Trí Tiên亗
6 tháng 8 2020 lúc 10:06

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 8 2020 lúc 10:07

sửa đề thành \(a^2+b^2+c^2=3\) nhé

Bình luận (0)
 Khách vãng lai đã xóa
Đỗ Bích Ngọc
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 17:00

đặt \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(=>A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(=>A^2\le\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right].3\)

\(=>A^2\le\left[2\left(a+b+c\right)\right]3=2.3=6\)

\(=>A\le\sqrt{6}\left(dpcm\right)\)

dấu"=" xảy ra<=>a=b=c=1/3

Bình luận (0)
Edogawa Conan
18 tháng 7 2021 lúc 17:07

Ta có:\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\)

  \(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=3.2=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Dấu "=" xảy ra <=> a=b=c=1/3

Bình luận (0)
Lê Châu Linh
Xem chi tiết
Thắng Nguyễn
29 tháng 9 2017 lúc 17:03

Đặt \(THANG=\frac{\left(b+c\right)\sqrt{a^2+1}}{\sqrt{b^2+1}\sqrt{c^2+1}}\)

\(=\frac{\left(b+c\right)\sqrt{a^2+ab+bc+ca}}{\sqrt{b^2+ab+bc+ca}\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{\left(b+c\right)\sqrt{\left(a+b\right)\left(a+c\right)}}{\sqrt{\left(b+c\right)\left(a+b\right)}\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)}\sqrt{\left(b+c\right)}}=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)^2}}\)

\(=\frac{b+c}{b+c}=1\left(b,c\in R^+\right)\)

Bình luận (0)
Lê Châu Linh
29 tháng 9 2017 lúc 8:12

chứng minh bằng 1

Bình luận (0)
Nyx Artemis
Xem chi tiết
Pandora Ann
2 tháng 8 2017 lúc 9:52

Đề: Cho a, b, c, d là 4 số dương thoả mãn abcd = 1. Chứng minh rằng: \(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\ge8\)

~ ~ ~ ~ ~

Áp dụng BĐT AM - GM, ta có:

\(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)

\(\ge2\sqrt[4]{\left(1+a\right)\left(1+b\right)}\times2\sqrt[4]{\left(1+c\right)\left(1+d\right)}\)

\(=4\sqrt[4]{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\ge4\sqrt[4]{2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\times2\sqrt{d}}\)

\(=4\sqrt[4]{16\sqrt{abcd}}\)

= 8 (đpcm)

Dấu "=" xảy ra khi a = b = c = d = 1

Bình luận (0)