So sánh: \(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\) và \(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
so sánh\(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\)và\(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
so sánh 2 số:
a, \(\sqrt{2014}+\sqrt{2016}\) và \(2\sqrt{2015}\)
b, \(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\) và \(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
a. Ta có \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\to\frac{1}{\sqrt{2016}+\sqrt{2015}}
So sánh
a/ \(\sqrt{2010} -\sqrt{2009} và \sqrt{2008} - \sqrt{2007}\)
So sánh A và B
\(A=\sqrt{2009}+\sqrt{2010}+\sqrt{2011}\)
\(B=\sqrt{2007}+\sqrt{2008}+\sqrt{2015}\)
\(A-B=\sqrt{2009}-\sqrt{2007}+\sqrt{2010}-\sqrt{2008}+\sqrt{2011}-\sqrt{2015}\)
\(=\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}\)
Ta có \(\left\{{}\begin{matrix}\sqrt{2009}+\sqrt{2007}< \sqrt{2011}+\sqrt{2015}\\\sqrt{2010}+\sqrt{2008}< \sqrt{2011}+\sqrt{2015}\end{matrix}\right.\)
\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}>\frac{2}{\sqrt{2011}+\sqrt{2015}}+\frac{2}{\sqrt{2011}+\sqrt{2015}}=\frac{4}{\sqrt{2011}+\sqrt{2015}}\)
\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}>0\)
\(\Rightarrow A-B>0\Rightarrow A>B\)
cho A=\(\sqrt{2009}+\sqrt{2010}+\sqrt{2011}\)
B=\(\sqrt{2007}+\sqrt{2008}+\sqrt{2015}\)
\(\sqrt{2006}-\sqrt{2005}và\sqrt{2008}-\sqrt{2007}\)
So sánh
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
So sánh :\(\sqrt{2009}-\sqrt{2008};\sqrt{2008}-\sqrt{2007}\)
\(\frac{1}{\sqrt{2009}-\sqrt{2008}}=\frac{\sqrt{2009}+\sqrt{2008}}{\left(\sqrt{2009}+\sqrt{2008}\right)\left(\sqrt{2009}-\sqrt{2008}\right)}=\frac{\sqrt{2009}+\sqrt{2008}}{2009-2008}=\sqrt{2009}+\sqrt{2008}\)
CMTT : \(\frac{1}{\sqrt{2008}-\sqrt{2007}}=\sqrt{2008}+\sqrt{2007}\)
Vì \(\sqrt{2009}+\sqrt{2008}>\sqrt{2008}+\sqrt{2007}\)
=> \(\frac{1}{\sqrt{2009}-\sqrt{2008}}\sqrt{2008}-\sqrt{2007}\)
A= \(\sqrt{2008}\)+\(\sqrt{2009}\)+\(\sqrt{2010}\) va B= \(\sqrt{2005}\)+\(\sqrt{2007}\)+\(\sqrt{2015}\) so sanh
tính gtrị của biểu thức bằng máy tính cásio(giải thích rõ hộ mình nha)
\(\sqrt[2011]{2010\sqrt[2010]{2009\sqrt[2009]{2008\sqrt[2008]{2007........\sqrt[2002]{2001\sqrt[2001]{2000}}}}}}\)