\(^{2^{x+1}\cdot2^1+4\cdot2^x}\)
tìm \(x\inℕ,\)biết:
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+....+x\cdot2^x=2^{x+1}\)
1 ) Tìm x biết
a) \(x^{10}\cdot\left(x^2\right)^{10}\cdot\left(x^3\right)^{10}\cdot...\cdot\left(x^{10}\right)^{10}\)
b)\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
c)\(3\cdot2^{x+2}=5\cdot2^3\)
tìm x biết
1)\(-\frac{2}{3}\cdot\left(x-\frac{1}{4}\right)=\frac{1}{3}\cdot\left(2x-1\right)\)
2)\(\frac{1}{5}\cdot2^x+\frac{1}{5}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
Tìm x, biết: \(\frac{1}{2}\cdot2^x+4\cdot2^x-288=0\)
\(\Rightarrow2^x\left(\frac{1}{2}+4\right)=288\Rightarrow2^x.\frac{9}{2}=288\Rightarrow2^x=64=2^6\Rightarrow x=6\)
\(\)\(\left(\frac{1}{2}+4\right).2^x=288\)
\(\frac{9}{2}.2^x=288\)
\(2^x=64\)
\(2^x=2^6\)
=> x=6
Bài 1 Tìm số tự nhiên x biết
a) \(2^{3x+2}=4^{x+5}\)
b) \(2^x+2^x+4=272\)
c) \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}=\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
d) \(2\cdot2^2+3\cdot2^2+4\cdot2^2+5\cdot2^2+...+x\cdot2^x=2^{x+10}\)
a) \(2^{3x+2}=4^{x+5}\Leftrightarrow2^{3x+2}=2^{2\left(x+5\right)}\Leftrightarrow2^{3x+2}=2^{2x+10}\)
\(\Rightarrow3x+2=2x+10\Leftrightarrow3x+2-2x-10\)
\(\Leftrightarrow x-8=0\Leftrightarrow x=8\) vậy \(x=8\)
Tìm x\(\in\)Z biết:
\(2\cdot2^2\cdot2^3\cdot2^4\cdot...\cdot2^x=1024\)
\(2^1.2^2.2^3.....2^x=1024\Rightarrow2^{1+2+3+...+x}=2^{10}\)
\(\Rightarrow1+2+3+...+x=1024\Rightarrow x=4\)
1. Tính:
a)\(81^3:3^5\)
b)\(16\cdot2^4\cdot\frac{1}{32}\cdot2^3\)
2. Tìm x:
a) \(\left(x-1\right)^5=32\)
b) \(\left(2^3:4\right)\cdot2^{\left(x+1\right)}=64\)
Tìm \(n\in N\)
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+...+\left(n-1\right)\cdot2^{n-1}+n\cdot2^n=2^{n+34}\)
\(2\cdot x+1+4\cdot2^2=6\cdot2^5\)
ai làm được câu này mik cho 3 tik
\(2x+1+4\cdot2^2=6\cdot2^5\)
\(2x+1+4\cdot4=6\cdot32\)
\(2x+1+16=192\)
\(2x+17=192\)
\(2x=192-17\)
\(2x=175\)
\(x=175:2\)
\(x=87,5\)