Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zz Victor_Quỳnh_Lê zZ
Xem chi tiết
Zz Victor_Quỳnh_Lê zZ
7 tháng 1 2016 lúc 17:54

minh tink cho bn bn tink vho minh voi nhe

Lê Phúc Thuận
Xem chi tiết

Nhân cả 2 vế của pt với 4 ta đc 4x2+4y2-4x-4y=32

Suy ra (2x-1)2+(2y-1)2=34 mà 34=52+32

Nên (2x-1),(2y-1) thuộc tập hợp (5,3),(-5,-3),(-5,3),(5,-3) giải ra ta tìm đc x,y

❊ Linh ♁ Cute ღ
4 tháng 4 2018 lúc 12:43

4( X*2 +Y*2 -x-y)= 4*8=32 
4x^2-4x+1+4y^2-4y+1=34 
(2x-1)^2+(2y-1)^2=34 
=> pt a^2+b^2=34 
=>1) l a l=3, b=l 5 l,2) l a l=5, b=l 3 l 
1) 2x-1=a=(+/-)3 => x=2, x=1 
2y-1=b=(+/-)5=> y=3, y=-2 
tuong tu 2)y=2, y=1,x=3, x=-2 

nguyễn minh quý
Xem chi tiết
nguyenhuonggiang
Xem chi tiết
Phan Văn Hiếu
23 tháng 3 2017 lúc 12:18

\(x^2-2x+1-y^2=12\)

\(\Leftrightarrow\left(x-1\right)^2-y^2=12\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=12\)

đến đây lập luận ước của 12 bạn tự làm nốt nha       

trần huy hoàng
Xem chi tiết
Cassie Natalie Nicole
Xem chi tiết
pham trung thanh
2 tháng 11 2017 lúc 20:21

\(8x^2-7x+13=y\left(x-1\right)^2\)

\(\Leftrightarrow\left(8x^2-8x\right)+\left(x-1\right)+14-\left(x-1\right)\left(xy-y\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+1-xy+y\right)=-14\)

Đến đây xét từng trường hợp ước của -14 là ra. Bạn tự làm tiếp nhé

Nguyễn Minh Quý
Xem chi tiết
Quang Trần Minh
Xem chi tiết
Tui Ta
Xem chi tiết
Dương Lam Hàng
14 tháng 2 2018 lúc 19:50

a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)

Với a = 4

Thay vào phương trình (t) ta được:

  \(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)

\(\Leftrightarrow2x^2=2x^2-8\)

\(\Leftrightarrow0x=-8\)

Vậy phương trình vô nghiệm

b) Nếu x = -1

\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)

\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)

\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)

\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)

\(\Leftrightarrow-a^2+2a=-2-1+3\)

\(\Leftrightarrow a\left(2-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

Vậy a = {0;2}

NĂM MỚI VUI VẺ

Hiếu
14 tháng 2 2018 lúc 19:52

\(a,\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

\(\frac{x+2+2}{x+2}+\frac{x-4+2}{x-4}=2\)

=> \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=>\(2\left(\frac{x-4+x+2}{\left(x+2\right)\left(x-4\right)}\right)=0\)

=> x=1 (t/m \(x\ne-2\) và \(x\ne4\))