Tìm n thuộc N để :
5n +7 chia hết cho 1 -3n
Tìm n thuộc N để
a) n+8 chia hết cho n
b) 3n+5 chia hết cho n
c) 3n+7 chia hết cho n+2
d) 5n+9 chia hết cho n+1
Tìm n thuộc N để:
a. 3n+7 chia hết n+2
b. 5n+9 chia hết cho n+1
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Tìm n thuộc N để a) (n+4) chia hết cho n b) (3n+7) chia hết cho n c) (27 - 5n) chia hết cho n
bài 1: tìm n thuộc z để
1) n+7 chia hết cho n+3
2) 2n+5 chia hết cho n+3
3) 3n+1 chia hết cho 1-2n
4) 3n+2 chia hết cho 11-5n
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
3) Đặt A = 3n + 1
=> 2A = 6n + 2 = -3(1 - 2n) + 5
Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n
Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n
=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}
Với: +)1 - 2n = 1 => 2n = 0 => n = 0
+)1 - 2n = -1 => 2n = 2 => n = 1
+) 1 - 2n = 5=> 2n = -4 => n = -2
+) 1 - 2n = -5 => 2n = 6 => n = 3
3) Đặt B = 3n + 2
=> 5B = 15n + 10 = -3(11 - 5n) + 21
Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B \(⋮\)11 - 5n
Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n
=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}
Lập bảng :
11-5n | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 2 | 12/5(ktm) | 8/5(ktm) | 14/5(ktm) | 4/5(ktm) | 18/5(ktm) | -2 | 32(ktm) |
Vậy ...
tìm n thuộc N để
n +4 chia hết cho n3n + 7 chia hết cho n27 5n chia hết cho nCâu 1
n+4\(⋮\)n
n\(⋮\)
n+4-n\(⋮\)n
4\(⋮\)n
\(\Rightarrow\)n={1;2;4}
Câu 2
3n+7\(⋮\)n
3n\(⋮\)n
3n+7-3n\(⋮\)n
7\(⋮\)n
\(\Rightarrow\)n={1;7}
Câu 3 điền thêm dau đi
Bài 1: Tìm n thuộc N để
a) 3n+7 chia hết cho n
b) n+10 chia hết cho n-1
c) 3n+5 chia hết Cho n-2
Bai 2 chứng minh rằng (5n+7).(4n+6) chia hết 2 với mọi n thuộc N
\(^{_{ }\in}\)
Tìm n thuộc N để :
a) 5n + 9 chia hết cho n + 1
b) 3n + 7 chia hết cho 2n + 1
c) n - 3 chia hết cho 15
d) n + 9 chia hết cho n +3
c, n-3 chia hết cho 15
=> n-3 thuộc Ư(15)={1;3;5;15}
=> n={4;6;8;18}
a, 5n+9 chia hết cho n+1
<=> 5n+1+9 chia hết cho n+1
Mà 5n+1 chi hết cho n+1
=> 9 chia hết cho n+1
<=> n+1 thuộc Ư(9)={1;3}
=> n={0;2}
Tìm n thuộc Z để :
a) (n+4) chia hết cho n
b) (3n +7) chia hết cho n
c) ( 27 - 5n) chia hết cho n
a) n = -4 hoặc n = 4 hoặc n = 2 hoặc n = 1 hoặc n = -1
b) n = 7 hoặc n = -7 hoặc n = 1 hoặc n = -1
c) n = 27 hoặc n = -27 hoặc n = -9 hoặc n = 9 hoặc n = 3 hoặc n = -3.