phan tich da thuc sau thanh nhan tu ab(x^2+y^2)-xy(a^2+b^2)
phan tich da thuc thanh nhan tu (x^2+xy)^2-(y^2+xy)^2
Ai giup minh voi a
Phan tich da thuc thanh nhan tu
(xy-1)^2 -x^2-y^2
phan tich da thuc sau thanh nhan tu
2x^2-xy-y^2
Ta có
\(2x^2-xy-y^2=x^2-xy+x^2-y^2\) \(=x\left(x-y\right)+\left(x+y\right)\left(x-y\right)\)
\(=\left(x+x+y\right)\left(x-y\right)\)
\(=\left(2x+y\right)\left(x-y\right)\)
phan tich da thuc thanh nhan tu (xy+1)^2 -(x-y)^2 ai giup minh voi
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
phan tich da thuc thanh nhan tu a, (3x+1)^2-(x+1)^2
b, 6x-6y-x^2+xy
\(a,\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
\(b,6x-6y-x^2+xy\)
\(=\left(6x-6y\right)-\left(x^2-xy\right)\)
\(=6\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left(6-x\right)\)
phan tich da thuc thanh nhan tu
a) xy-y2+2x-2y
b) x2+2xy+y2-9
a, = (xy-y^2) + (2x-2y) = y(x-y) + 2.(x-y) = (x-y).(y+2)
b, = (x+y)^2 - 9 = (x+y-3).(x+y+3)
\(xy-y^2-2x-2y\)
=(xy-y).(2x-2y)
=y(x-y).2(x-y)
=(x-y).(y-2)
phan tich da thuc thanh nhan tu:
x^2-xy-2y^2
x2-xy-2y2
= x2-2xy+xy-2y2
=x(x-2y)+y(x-2y)
=(x-2y)(x+y)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
phan tich da thuc sau thanh nhan tu
1)x2-2xy+y2+xz+yz
2)a3x-ab+b-x