Giải phương trình
\(\sqrt{5X-3}=3-X\)
Giải phương trình \(x\sqrt{2x^2+5x+3}=4x^2-5x-3\)
Gợi ý
ĐKXĐ: ....
Do x=0 không phải là nghiệm nên chia cả hai vế cho x^2 có
\(\sqrt{2+\frac{5}{x}+\frac{3}{x^2}}=4-\frac{5}{x}-\frac{3}{x^2}\)(1) Đặt \(\sqrt{\frac{5}{x}+\frac{3}{x^2}+2}=y\Rightarrow y\ge0\)và \(\frac{5}{x}+\frac{3}{x^2}=y^2-2\)
Khi đó \(\left(1\right)\Leftrightarrow y=4-y^2+2\)Sau khi tìm được y thì thế vào tìm x , rồi đối chiếu ĐKXĐ và trả lời
KL : ...
Giải phương trình :
\(\sqrt{2x+5}-\sqrt{3-x}=x^2-5x+8\)
\(\sqrt{2x+5}+3-1-\sqrt{3-x}=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x+5}-3}-\frac{2-x}{1-\sqrt{3-x}}-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x+5}-3}+\frac{1}{1-\sqrt{3-x}}-x+3\right)=0\)
Giải nốt vs ạ
Giải phương trình: \(x^2+11x+10=3\left(x+3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{5x+1}\)
Đặt √(x+1) làm thừa số chung rồi phân tích tiếp. Nghiệm là 0 và 3
Giải phương trình:
\(a)\sqrt{x^2+x+6}-\sqrt{x+3}=\sqrt{2x^2-5x+2}-\sqrt{2x-1}\)
\(b)\sqrt{x+1}+\sqrt{2x+3}=x^2-4\)
Giải phương trình:
\(a)\sqrt{x^2+x+6}-\sqrt{x+3}=\sqrt{2x^2-5x+2}-\sqrt{2x-1}\)
b)\(\sqrt{x+1}+\sqrt{2x+3}=x^2-4\).
GIẢI PHƯƠNG TRÌNH \(\sqrt{\sqrt{3}-X}=X\sqrt{\sqrt{3}+X}\)
\(\sqrt{2-x^2+3x}=\sqrt{5x^2-1}\)
Giải phương trình !
\(ĐK:\frac{3-\sqrt{17}}{2}\le x\le\frac{3+\sqrt{17}}{2};\orbr{\begin{cases}x\ge\frac{1}{\sqrt{5}}\\x\le-\frac{1}{\sqrt{5}}\end{cases}}\)
Bình phương hai vế của phương trình, ta được: \(2-x^2+3x=5x^2-1\Leftrightarrow6x^2-3x-3=0\Leftrightarrow3\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\left(tmđk\right)\)
Vậy phương trình có tập nghiệm S = {1; -1/2} }
giải các phương trình: x+3=-2x-4+5x
\(\text{x+3=-2x-4+5x}\)
\(x+2x-5x=-4-3\)
\(-2x=-7\)
\(x=-7:\left(-2\right)\)
\(x=\frac{7}{2}\)
học tốt
Giải phương trình: \(x\sqrt{x}-3\sqrt{x}-x=-3\).
\(x\sqrt{x}-3\sqrt{x}-x=-3\) \(\left(x\ge0\right)\)
\(\Leftrightarrow x\sqrt{x}-3\sqrt{x}-x+3=0\)
\(\Leftrightarrow\sqrt{x}\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (t/m)
Vậy pt có tập nghiệm .....