TÌM SỐ TỰ NHIÊN N+1, N + 4 ĐỒNG THỜI LÀ CÁC SỐ NGUYÊN TỐ
Cho các số tự nhiên n;n+2;n+6 đồng thời là các số nguyên tố .tìm n
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
Tìm số tự nhiên n để 2n-1 và 2n+1 đồng thời là hai số nguyên tố.
\(\hept{\begin{cases}a=2^n-1\\b=2^n\\c=2^n+1\end{cases}}\)=> a,b,c: Là ba số tự nhiên liên tiếp
Vậy: với n=0=> a=0; loại
n=1=> a=1 loại
n=2=>a=3;b=4;c=5 nhận.
với n>2 : Trong 3 số tn liên tiếp có : 1 số chia hết cho 3 ; vậy 2^n phải chia hết cho 3 điều này không xẩy ra
Vậy: n=2 là duy nhất
tìm số tự nhiên n sao cho: n+2; n+10 và 2n+27 đồng thời là số nguYÊN TỐ
Olm sẽ hướng dẫn em giải những dạng toán nâng cao như này bằng phương pháp đánh giá em nhé.
Nếu n = 2 ta có: 2 + 2 = 4 ( loại)
Nếu n = 3 ta có: 2n + 27 = 2.3 + 27 = 33 (loại)
Nếu n > 3 thì vì n là số nguyên tố nên n có dạng:
n = 3k + 1 hoặc n = 3k + 2
Với n = 3k + 1 ta có: n + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)
Với n = 3k + 2 ta có: n + 10 = 3k + 2 + 10 = 3k + 12 =3.(k+4)⋮3 (loại)
Không có số tự nhiên nào thỏa mãn n+2; n+10; 2n+27 đồng thời là số nguyên tố.
Kết luận: n \(\in\) \(\varnothing\)
Tìm số tự nhiên n để 2n-1 và 2n + 1 đồng thời là hai số nguyên tố
\(\text{Tìm số tự nhiên n để 2^n-1 và 2^n+1 đồng thời là hai số nguyên tố.}\)
Bài 1:Tìm số tự nhiên n sao cho 2^n+1 và 2^n-1 là số nguyên tố.
Bài 2:Tìm 3 số tự nhiên lẻ liên tiếp đồng thời là số nguyên tố.
Bài 3:Cho p là số nguyên tố ; p>3; q là số nguyên tố; q>3 và p>q. Chứng tỏ rằng (p^2-q^2) chia hết cho 24.
TRÌNH BÀY BÀI GIẢI GIÚP MÌNH NHA
Tìm số tự nhiên n để 2n+1 và 2n-1 đồng thời là các số nguyên tố
mình cần chi tiết nha
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1