Cho xyz = 2017
CMR : \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{xz+z+1}=1\)
Cho ba số x , y , z thỏa mãn xyz = 2017
Tính tổng D = 2017x / xy + 2017x + 2017+ y/yz+y+2017+z/zx+z+1
thay xyz=2017, ta có:
\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{Bài làm }\)
\(\text{ Gọi xyz = 2017}\)
\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{# Chúc bạn học tốt #}\)
@bn Thần chết:
đề bài cho xyz=2017 rồi nên ko được gọi nữa nhé
Biết x.y.z =2017
Tính tổng A = \(\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{xz+z+1}\)
Ta có : A = \(\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{xz+z+1}\)
A = \(\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\) (Vì xyz = 2017)
A = \(\dfrac{xy\left(xz\right)}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)
A = \(\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}\)
A = \(\dfrac{xz+1+z}{xz+1+z}\) = 1
Vậy A = 1
) Tính giá trị của biểu thức sau bằng các hợp lý : A=\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b) Tính: B=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
c) Giả sử x+y+z=2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
TÍNH tổng C=\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
d) Cho ba sô x,y,z thỏa mãn xyz=2017
Tính tổng: D= \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{zx+z+1}\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
b
Tổng quát:\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n^2+2n\right)-\left(n+2\right)}{n\left(n+1\right)}\)
\(=\frac{n\left(n+2\right)-\left(n+2\right)}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Thay số vào,ta được:
\(\frac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\cdot\frac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}\cdot.....\cdot\frac{\left(2017-1\right)\left(2017+2\right)}{2017\left(2017+1\right)}\)
\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{2016\cdot2019}{2017\cdot2018}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2016}{2\cdot3\cdot4\cdot...\cdot2017}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2019}{3\cdot4\cdot5\cdot...\cdot2018}\)
\(=\frac{1}{2017}\cdot\frac{2019}{3}=\frac{2019}{6051}\)
a) CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-zx\right)}\)với x khác y , xyz khác 0 , yz khác 1 , xz khác 1 m thì xy+xz+yz= xyz(x+y+z)
:b) Cho a, b , c là các số thực khác 0 và thỏa mãn :
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2017}+b^{2017}+c^{2017}=1\end{cases}}\)
Tính giá trị của biểu thức P= \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Tính Giá trị
B = 2017x / 2017x + 2017 + y/z +y + 2017 + z/xz + z +1
với x = 1/2
y = số nguyên âm lớn nhất
Bài 1: Cho ba số x,y,z thỏa mãn x.y.z = 2017
Tính tổng D = \(\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{zx+z+1}\)
Thông cảm vì mk đăng ko đúng dạng bài nhưng mong các bn giúp mk vs ak. Mk cảm ơn
\(D=\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
Vì \(xyz=2017\)
\(D=\dfrac{xy\left(xz\right)}{xy\left(1+xz+z\right)}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz}{1+xz+z}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz+1+z}{1+xz+z}=1\)
Vậy D = 1
Tính giá trị
B = 2017x/2017x + 2017 + y/yz + y + 2017 + z/xz + z +1
với x = 1/2
y = là số nguyên âm lớn nhất
Cho 3 số dương x,y,z thỏa mãn: xyz=1 . Tính giá trị biểu thức :
\(M=\frac{x+2xy+1}{x+xy+xz+z}+\frac{y+2yz+1}{y+yz+xy+1}+\frac{z+2xz+1}{z+xz+yz+1}\)
Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)
Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)
=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)
Cho 3 số x;y;z khác 0 thỏa mãn xy+2013x+2013 khác 0 ; yz+y +2013 khác 0 ; xz+z+1 khác 0 và xyz=2013.
Chứng minh : \(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}=1\)
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Thay xyz=2013 vào ta có:
\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)