\frac{15}{11\cdot 14}+\frac{15}{14\cdot \:17}+\frac{15}{17\cdot \:20}+...+\frac{15}{68\cdot \:71}
tính bằng cách thuận tiện nhất
a,\(\frac{6}{7}\cdot\frac{16}{15}\cdot\frac{7}{6}\cdot\frac{21}{32}\)b, \(\frac{21}{17}\cdot\frac{13}{14}\cdot56\cdot\frac{3}{42}\) c,\(\frac{7}{4}\cdot\frac{11}{21}+\frac{11}{21}\cdot\frac{5}{4}\) d,\(\frac{23}{14}\cdot\frac{6}{14}-\frac{9}{14}\cdot\frac{6}{13}\)
a, \(\frac{6}{7}.\frac{16}{15}.\frac{7}{6}.\frac{21}{32}=\frac{6}{7}.\frac{7}{6}.\frac{16}{15}.\frac{21}{32}\)=\(1.\frac{16}{15}.\frac{21}{32}=\frac{7}{5.2}=\frac{7}{10}\)
Phần b T2
c,\(\frac{7}{4}.\frac{11}{21}+\frac{11}{21}.\frac{5}{4}=\frac{11}{21}.\left(\frac{7}{4}+\frac{5}{4}\right)\)=\(\frac{11}{21}.3=\frac{11}{7}\)
Tìm x:
\(\frac{\left(13\frac{2}{9}-15\frac{2}{3}\right)\cdot\left(30^2-5^4\right)}{\left(18\frac{3}{7}-17\frac{1}{4}\right)\cdot\left(25-12\cdot5^2\right)}\cdot x=\frac{\frac{2}{11}+\frac{3}{13}+\frac{4}{15}+\frac{5}{17}}{4\frac{1}{11}+\frac{5}{13}+\frac{9}{15}+\frac{13}{17}}\)
\(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
Bài 1: Tính(hợp lý nếu có thể) e) \(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}\) f)\(\frac{12}{19}\cdot\frac{7}{15}\cdot\frac{-13}{17}\cdot\frac{19}{12}\cdot\frac{17}{13}\) g) \(\left(\frac{-4}{5}+\frac{4}{3}\right)+\left(\frac{-5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)
tính hợp lí
\(\frac{3}{4}\cdot\frac{15}{17}+\frac{3}{4}\cdot\frac{2}{17}+\frac{1}{17}\)
\(\frac{3}{4}\cdot\frac{15}{17}+\frac{3}{4}\cdot\frac{2}{17}+\frac{1}{17}\)
\(=\frac{3}{4}\cdot\left(\frac{15}{17}+\frac{2}{17}\right)+\frac{1}{17}\)
\(=\frac{3}{4}\cdot1+\frac{1}{17}\)
\(=\frac{5}{8}\)
\(\frac{3}{4}.\frac{15}{17}+\frac{3}{4}.\frac{2}{17}+\frac{1}{17}\)
=\(\frac{3}{4}.\left(\frac{15}{17}+\frac{2}{17}\right)+\frac{1}{17}\)
=\(\frac{3}{4}.1+\frac{1}{17}\)
=\(\frac{51}{68}+\frac{4}{68}=\frac{55}{68}\)
tính nhanh
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(\frac{7}{13}\cdot\frac{5}{14}\cdot\frac{39}{15}\)
\(2\frac{3}{7}\cdot\frac{1}{2}-\frac{1}{2}\cdot\frac{3}{7}+\frac{1}{3}\)
\(\frac{9}{5}:\frac{17}{15}+\frac{8}{5}:\frac{17}{15}\)
\(\frac{2017}{2018}\cdot\frac{1}{2019}+\frac{2017}{2018}:\frac{2019}{2018}+\frac{1}{2018}\)
\(\frac{637\cdot527-189}{526\cdot637+448}\)
\(\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+\frac{4}{9\cdot11}+...+\frac{4}{23\cdot25}\)
dấu . là dấu nhân nha mọi người
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
tính nhanh
A= \(\frac{19}{23}\cdot\frac{-4}{7}-\frac{4}{23}\cdot\frac{2}{7}\)
B= \(\frac{3}{5}+\frac{2}{5}\cdot\frac{-11}{3}+\frac{2}{3}\cdot\frac{-2}{5}+\frac{14}{15}\)
a) A = \(\frac{19}{23}.\frac{-4}{27}-\frac{4}{23}.\frac{2}{7}\)
= \(\frac{19}{7}.\frac{-4}{23}+\frac{-4}{23}.\frac{2}{7}\)
= \(\frac{-4}{23}.\left(\frac{19}{7}+\frac{2}{7}\right)\)
= \(\frac{-4}{23}.3\)
= \(\frac{-12}{23}\)
b) B = \(\frac{3}{5}+\frac{2}{5}.\frac{-11}{3}+\frac{2}{3}.\frac{-2}{5}+\frac{14}{15}\)
= \(\frac{9+14}{15}+\frac{2}{5}.\frac{-11}{3}+\frac{-2}{3}.\frac{2}{5}\)
= \(\frac{23}{15}+\frac{2}{5}\left(\frac{-11}{3}+\frac{-2}{3}\right)\)
= \(\frac{23}{15}+\frac{2}{5}.\frac{-13}{3}\)
= \(\frac{23}{15}+\frac{-26}{15}\)
= \(\frac{-3}{15}=\frac{-1}{5}\)
Tính:
a, \(\frac{7}{12}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{12}_{ }\)
b, \(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}\)
c, \(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
Bài giải
a, \(\frac{7}{12}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{12}\)
\(=\left(\frac{7}{12}-\frac{5}{12}+\frac{5}{6}+\frac{1}{4}\right)-\frac{3}{7}=\left(\frac{7}{12}-\frac{5}{12}+\frac{10}{12}+\frac{3}{12}\right)-\frac{3}{7}=\frac{5}{4}-\frac{3}{7}=\frac{23}{28}\)
b, \(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\frac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\frac{3^{29}\left(11-3\right)}{3^{28}\cdot4}=\frac{3\cdot8}{4}=6\)
Tìm các tích sau :
a/ \(\frac{16}{15}\times\frac{-5}{14}\times\frac{64}{24}\times\frac{56}{21}\)
b/ \(\frac{7}{3}\cdot\frac{-5}{2}\cdot\frac{15}{21}\cdot\frac{4}{-5}\)