Tìm các số nguyên tố x, y thỏa mãn (x-1)(x+1)=6y^2
Tìm các số nguyên tố x,y thỏa mãn: x^2 + 1 = 6y^2 + 2
đỐ
Sorry bạn nhưng mình từng giải bài này
Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.
tìm các số nguyên tố để x,y thỏa mãn x^2 + 1 = 6y^2+2.
Tìm các số nguyên tố x,y thỏa mãn x^2-2x+1=6y^2-2x+2
Ta có:x^2-2x+1=6y^2-2x+2
x^2+1-2=6y^2-2x+2x
x^2-1=6y^2
y^2=x^2-1/6
Vì y^2 thuộc ước của x^2-1/6 suy ra y^2 là số chẵn mà y^2 là số chẵn suy ra y=2
Thay vào ta có:x^2-1/6=4
x^2-1=24
x^2=25
suy ra x=5.Vậy x=5:y=2 (Thử lại nhé)
Tìm các số nguyên tố x,y thỏa mãn (x-1)(x+1) = 6y^2
mọi người giúp mình bài này với ạ
Tìm các số nguyên tố x,y thỏa mãn x^2+1=6y^2+2.Các bạn ơi giúp mình nhé mình đang cần gấp ạ
Cá bạn ơi giúp mình với mình đang cần gấp lắm ạ
tìm số nguyên tố x,y thỏa mãn : x mũ 2 +1 = 6y mũ 2 +2
tìm các số nguyên tố x,y thỏa mãn x^2+1=6y^2+2 các bạn giúp mình với mình đang cần gấp lắm ạ
Tìm các số nguyên tố x, y thỏa mãn:
(x-y)^2 * (y-3)= -4x^2 - 2x+1= 6y^2-2x+2các số nguyên tố x,y thỏa mãn x^2+1=6y^2+2 giúp em với ạ