cho a = \(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\)
1) chứng minh : \(4a^2+\sqrt{2a}-\sqrt{2}=0\)
2) tính S=\(a^2+\sqrt{a^4+a+1}\)
cho a=\(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\).1)CMR 4a2+\(\sqrt{2}a-\sqrt{2}=0\).2)tính S=a2 + \(\sqrt{a^4+a+1}\)
Cho \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\) .Chứng minh rằng \(4a^2+\sqrt{2}a-\sqrt{2}=0\) và tính giá trị của biểu thức:
\(B=a^2+\sqrt{a^4+a+1}\)
CM: \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\Rightarrow a+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(a+\frac{\sqrt{2}}{8}\right)^2=\left(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\right)^2\)\(\Leftrightarrow a^2+\frac{a\sqrt{2}}{4}+\frac{1}{32}=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow a^2+\frac{2\sqrt{a}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow4a^2+\sqrt{2}a-\sqrt{2}=0\)
Theo trên: \(4a^2+\sqrt{2}a-\sqrt{2}=0\Rightarrow a^2=\frac{\sqrt{2}\left(1-a\right)}{4}\Rightarrow a^4=\frac{a^2-2a+1}{8}\)
\(\Rightarrow a^4+a+1=\frac{a^2-2a+1}{8}+a+1=\left(\frac{a+3}{2\sqrt{2}}\right)^2\)
\(B=a^2+\sqrt{a^4+a+1}=a^2+\frac{a+3}{2\sqrt{2}}=\frac{2\sqrt{2}a^2+a+3}{2\sqrt{2}}\)\(=\frac{4a^2+\sqrt{2}a+3\sqrt{2}}{4}=\frac{4\sqrt{2}}{4}=\sqrt{2}\)
cho a =1/2 .\(\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\)
1. chứng minh rằng 4a2 +\(\sqrt{2}\)a -\(\sqrt{2}\)=0
2. tính giá trị của biểu thức s =a2+\(\sqrt{a^4+a+1}\)
Cho a = \(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\) _ \(\frac{\sqrt{2}}{8}\)
Chứng minh 4a\(^2\) + \(\sqrt{2}a\) - \(\sqrt{2}\)= 0
tính S = \(a^2+\sqrt{a^4+a+1}\)
Rút gọn biểu thức:
a) A = \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
b) B = \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) a>0 va a # 1
c) C = \(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
d) D = \(\frac{1}{2a-1}.\sqrt{5a^4.\left(-4a+4a^2\right)}\)
e) E = \(\frac{2}{x^2-y^2}.\sqrt{\frac{3x^2+6xy+3y^2}{4}}\)
cho a=\(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\)
XMR:a, \(4a^2+\sqrt{2}a-\sqrt{2}=0\)
b,tính S=\(a^2+\sqrt{a^4+a+1}\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
a) Cho \(A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{25}}\)
Chứng minh : 7 < A < 8
b) Chứng minh : \(5\sqrt{2}< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{50}}< 10\sqrt{2}\)
a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)
áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)
(so sánh bình phương 2 số sẽ ra nha)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
áp dụng công thức cho biểu thức A ta CM được
A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)
=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)
từ (1) và (2) => ĐPCM
b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)
và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)
từ (1) và (2)=>ĐPCM
(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)
MỜI BẠN THAM KHẢO
Cho \(x=\sqrt{6+2\sqrt{2}.\left(\sqrt{\frac{5}{2}-\sqrt{6}+\sqrt{\left(3\sqrt{a}+1\right)\left(2a-2\right)-\frac{6a^2+6\sqrt{a}-8a-4a\sqrt{a}}{\sqrt{a}-1}+8}}\right)}\) với a là số thực không âm
\(y=\frac{\frac{x-2}{x}+\frac{1}{x-2}}{12-8\sqrt{5}}.\left(-16\right)\)
So sánh x và y