Cho a+b+c+d=2 .Tìm GTNN của A= a^2+b^2+c^2+d^2
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Cho 4 số nguyên ko âm a,b,c,d thỏa mãn \(a^2+2b^2+3c^2+4d^2=36,2a^2+b^2-2d^2=6\). Tìm GTNN của \(Q=a^2+b^2+c^2+d^2\)
từ hệ điều kiện, bằng cách cộng theo vế ta được: pmin=14 đạt được khi (2) ta nhận được 0≤b≤2⇔[b=0b=2Khi đó:-Với (2) có dạng a thỏa mãn.-Với {a^2+3c^2=28, 2a^2=2 mà ⇒{a=1c=3Vậy a=1,b=2,c=3,d=0
Từ giả thiết suy ra \(3\left(a^2+b^2+c^2+d^2\right)-d^2=42\)
\(\Leftrightarrow3Q-d^2=42\)
\(\Rightarrow Q=\dfrac{42+d^2}{3}\ge\dfrac{42}{3}=14\)
\(\Rightarrow minQ=14\Leftrightarrow\left\{{}\begin{matrix}d=0\\a^2+2b^2+3c^2=36\left(1\right)\\2a^2+b^2=6\left(2\right)\end{matrix}\right.\)
Từ \(\left(2\right)\Rightarrow b^2⋮2\Rightarrow b⋮2\)
Vì \(b^2=6-2a^2\le6\Rightarrow0\le b\le\sqrt{6}\Rightarrow b\in\left\{0;2\right\}\)
TH1: \(b=0\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=36\\2a^2=6\end{matrix}\right.\Rightarrow a=\sqrt{3}\left(l\right)\)
TH2: \(b=2\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=28\\2a^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=1\end{matrix}\right.\)
Vậy \(minQ=14\Leftrightarrow\left(a;b;c;d\right)=\left(1;2;3;0\right)\)
cho a, b, c, d >0 và có tích = 1 tìm GTNN của
\(\text{a^2+b^2+c^2+d^2}\)
Gia tri nho nhat lon hon 0 la 1
ma nguoi ta khong yeu cau a,b,c,d khac nhau
suy ra gtnn=1
cho 4 số a,b,c,d thỏa mãn a+b+c+d =9.Tìm gtnn của P=a^2+b^2+c^2+d^2 (nhập kết quả dưới dạng phân số tối giản)
HELP ME NHÁ!
cho a,b,c,d là các số thoản mãn
a+b+c+d=7
a2+b2+c2+d2= 13
tìm GTLN, GTNN của a
1. Cho a,b,c,d là độ dài 3 cạnh của tam giác ABC, chứng minh:
|a/b+b/c+c/a-a/c-c/b-b/a|<1
2. Cho các số a,b,c,d thoả mãn: a+b+c+d = 7 và a^2+b^2+c^2+d^2=13
Tìm gtln và gtnn của a.
3. Chứng minh rằng: |x+y+z| =< |x|+|y|+|z|
Cho a,b,c,d là các số thực thỏa mãn \(a^2+b^2=2\left(a+b\right)-1\) và \(c^2+d^2=50-10\left(c+d\right)\). GTNN của \(P=\left(a+d\right)^2+\left(b+c\right)^2\) = ?
\(\left(c;d\right)\Rightarrow\left(-c;-d\right)\)
\(\left(a-1\right)^2+\left(b-1\right)^2=1\)
\(\left(c-5\right)^2+\left(d-5\right)^2=100\)
Gọi \(A\left(a;b\right)\) thuộc đường tròn có pt \(\left(x-1\right)^2+\left(y-1\right)^2=1\) (C) có tâm \(I\left(1;1\right)\) bán kính \(R=1\)
\(B\left(d;c\right)\) thuộc đường tròn có pt \(\left(x-5\right)^2+\left(y-5\right)^2=100\) (C') có tâm \(I'\left(5;5\right)\) bán kính \(R=10\)
\(\Rightarrow AB^2=P=\left(a-d\right)^2+\left(b-c\right)^2\)
\(P_{min}\Leftrightarrow A;B\) là giao điểm nằm cùng phía so với I và I' của đường thẳng II' với 2 đường tròn
Phương trình II': \(x-y=0\)
\(\Rightarrow A\left(\dfrac{2-\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right)\) ; \(B\left(5-5\sqrt{2};5-5\sqrt{2}\right)\)
\(\Rightarrow P_{min}=AB=\dfrac{9\sqrt{2}-8}{\sqrt{2}}=9-4\sqrt{2}\)