Cho x>0 thỏa mãn điều kiện x^2 + 1/x^2 = 7 .Tính x^5 + 1/x^5
cho x>0 thỏa mãn điều kiện \(x^2+\frac{1}{x^2}=7\)
tính \(x^5+\frac{1}{x^5}\)
Cho số x (x\(\in\)R,x>0) thỏa mãn điều kiện x2+\(\frac{1}{x^2}\)=7 Tính giá trị biểu thức x5+\(\frac{1}{x^5}\)
Ta có :
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)\)
\(=\left(x+\frac{1}{x}\right)\left(7-1\right)\)(vì \(x^2+\frac{1}{x^2}=7\))
\(=6\left(x+\frac{1}{x}\right)\)
Đặt \(x+\frac{1}{x}=a\)thì \(\left(x+\frac{1}{x}\right)=a^2\). Suy ra \(a^2-2=x^2+\frac{1}{x^2}\)
\(\Rightarrow a^2-2=7\)(vì \(x^2+\frac{1}{x^2}=7\))
\(\Rightarrow a^2=9\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
Vì \(x\inℝ,x>0\)nên \(x+\frac{1}{x}>0\)
\(\Rightarrow\) \(\left(x+\frac{1}{x}\right)^2=3^2\Rightarrow x+\frac{1}{x}=3\)
Do đó \(x^3+\frac{1}{x^3}=6.3=18\)
Ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+1\)
Mà \(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18=126\)
\(\Rightarrow x^5+\frac{1}{x^5}+1=126\)
\(\Rightarrow x^5+\frac{1}{x^5}=125\)
Vậy với \(x\inℝ,x>0\)và \(x^2+\frac{1}{x^2}=7\)thì \(x^5+\frac{1}{x^5}=125\)
Tính tổng của các số nguyên x thỏa mãn điều kiện:
1) -10 < x < 10
2) -5 ≤ x < 5
3) -10 < x < 6
4) -7 ≤ x < 6
1) -10 < x < 10
Gọi tập hợp trên là A: Các phần tử của tập A là:
A = { -9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8;9}
Tổng các phần tử tập hợp A là: (-9) + (-8) + (-7) + (-6) + (-5) + (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
= [(-9) + 9] + [(-8) + 8] + [(-7) + 7] + [(-6) + 6] + [(-5) + 5] + [(-4) + 4] + [(-3) + 3] + [(-2) + 2] + [(-1) + 1]
= 0 + 0 + 0 + 0 + ... + 0 (9 số 0)
= 0
2) -5 ≤ x < 5
Gọi tập hợp trên là B, theo đề bài trên, tập hợp B có số phần tử là:
B = {-5;-4;-3;-2;-1;0;1;2;3;4}
Tổng các phần tử của tập B là: (-5) + (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
= [(-4) + 4] + [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + (-5)
= 0 + 0 + 0 + 0 + (-5)
= (-5)
Các số x,y ( x , y khác 0 ) thỏa mãn các điều kiện x^2*y+5=-3 và xy^2 -7 = 1 tìm x , y
Cho 3 số x, y, z khác 0 thỏa mãn điều kiện:
x+y+z = 2013 và 1/x + 1/y + 1/z = 1/2013.
Tính giá trị của biểu thức A = (x^3+y^3)(y^5+z^5)(z^7+x^7)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)
\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)
\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)
\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)
\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)
cho x,y thỏa mãn điều kiện 5/x+1/y=2(y^2+x^2) và 5/x-1/y=y^2-x^2
tính M=x-y
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)
Bài.....:Chọn
A)(x-2)(x-5)<0
B)(x-4)(x-7)<0
C)(x-3)(x-5)<0
D)(x-2)(x-5)<0
Lưu ý: chọn số và trả lời Vì (...-2)(....-5)=.... . (-....)=-...<0=>Thỏa mãn điều kiện của bài
Cho \(x>0\) thỏa mãn điều kiện \(x^2+\frac{1}{x^2}=14\) . Tính giá trị biểu thức \(x^5+\frac{1}{x^5}\)
Ta có: \(x^2+\frac{1}{x^2}=14\)(1)
=> \(x^2+\frac{1}{x^2}+2=16\)
<=> \(\left(x+\frac{1}{x}\right)^2=16\)
<=> \(x+\frac{1}{x}=4\) (Vì x > 0)
<=> \(\left(x+\frac{1}{x}\right)^3=4^3\)
<=> \(x^3+3x+\frac{3}{x}+\frac{1}{x^3}=64\)
<=> \(x^3+\frac{1}{x^3}=64-3\left(x+\frac{1}{x}\right)\)
<=> \(x^3+\frac{1}{x^3}=64-3.4=52\) (2)
Từ (1) và (2) nhân vế theo vế:
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=14.52=728\)
=> \(x^5+\frac{1}{x}+x+\frac{1}{x^5}=728\)
=> \(x^5+\frac{1}{x^5}=728-4=724\)