CMR: nếu a/b=c/d thì 7a mũ 2 +5ac/7a mũ 2 -5ac = 7b mũ 2 +5bd/7b mũ 2 -4bd
CMR: Nếu\(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)( Giả sử các tỉ số đều có nghĩa)
Theo đề bài thì ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{7a}{7b}=\frac{5c}{5d}=\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(1\right)\)
Ta cần chứng minh:
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
\(\Leftrightarrow\frac{7a+5c}{7a-5c}=\frac{7b+5d}{7b-5d}\)
\(\Leftrightarrow\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(2\right)\)
Từ (1) và (2) ta suy ra điều phải chứng minh
CMR: Nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\) (giả sử các tỉ số đều có nghĩa)
Có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\begin{cases}a=c.k\\b=d.k\end{cases}\)
Ta có:
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{a.\left(7a+5c\right)}{a.\left(7a-5c\right)}=\frac{7.c.k+5c}{7.c.k-5c}=\frac{c.\left(7.k+5\right)}{c.\left(7.k-5\right)}=\frac{7.k+5}{7.k-5}\left(1\right)\)
\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b.\left(7b+5d\right)}{b.\left(7b-5d\right)}=\frac{7.d.k+5d}{7.d.k-5d}=\frac{d.\left(7.k+5\right)}{d.\left(7.k-5\right)}=\frac{7.k+5}{7.k-5}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\left(đpcm\right)\)
c/m nếu : a/b=c/d thì 7a2+5ac/7a2--5ac=7b2+5bd/7b2_5bd
ta có \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{\frac{7a^2+5ac}{a^2}}{\frac{7a^2-5ac}{a^2}}=\frac{7+5\frac{c}{a}}{7-5\frac{c}{a}}\)
tương tự ta có \(\frac{7b^2+5bd}{7b^2-5bd}=\frac{\frac{7b^2+5bd}{b^2}}{\frac{7b^2-5bd}{b^2}}=\frac{7+5\frac{d}{b}}{7-5\frac{d}{b}}\)
Mà \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{c}{a}=\frac{d}{b}\Rightarrow\frac{7+5\frac{c}{a}}{7-5\frac{c}{a}}=\frac{7+5\frac{d}{b}}{7-5\frac{d}{b}}\) Nên \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
a/ Tìm x, y, z biết 3x/8=3y/64=3z/216 và 2x^2+2y^2-z^2=1
b/ CMR:
Nếu a/b=c/d thì 7a^2+5ac/7a^2-5ac=7b^2+5bd/7b^2-5bd (Giả sử các tỉ số đều có nghĩa)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\)
Ta có :
\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\Leftrightarrow\dfrac{7a^2+5ac}{7b^2+5bd}=\dfrac{7a^2-5ac}{7b^2-5bd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\\ Thaya=bk;c=dk,tacó:\)
\(\dfrac{7a^2+5ac}{7b^2+5bd}=\dfrac{7\cdot b^2\cdot k^2+5\cdot bk\cdot dk}{7b^2+5bd}=\dfrac{k^2\cdot\left(7b^2+5ac\right)}{7b^2+5ac}=k^2\left(1\right)\)
\(\dfrac{7a^2-5ac}{7b^2-5bd}=\dfrac{7\cdot b^2\cdot k^2-5\cdot bk\cdot dk}{7b^2-5bd}=\dfrac{k^2\cdot\left(7b^2-5ac\right)}{7b^2-5ac}=k^2\left(2\right)\)
từ (1) và (2) \(\RightarrowĐpcm\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
hok trường chuyên mak dell bt bài ni ak:))
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Thay vào ta được:\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2k^2+5bk\cdot dk}{7b^2k^2-5bk\cdot dk}=\frac{bk^2\left(7b+5d\right)}{bk^2\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(1\right)\)
\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
Ta có : a/b = c/d => a/c = b/d
Đặt \(\frac{a}{c}=\frac{b}{d}=k\) => \(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
Khi đó, ta có: \(\frac{7.\left(ck\right)^2+5c^2k}{7\left(ck\right)^2-5c^2k}=\frac{7.c^2.k^2+5.c^2.k}{7.c^2.k^2-5.c^2.k}=\frac{\left(7k+5\right).c^2.k}{\left(7k-5\right).c^2.k}=\frac{7k+5}{7k-5}\)(1)
\(\frac{7.\left(dk\right)^2+5.d^2.k}{7\left(dk\right)^2-5.d^2.k}=\frac{7.d^2.k^2+5.d^2.k}{7.d^2.k^2-5.d^2.k}=\frac{\left(7k+5\right).d^2.k}{\left(7k-5\right).d^2.k}=\frac{7k+5}{7k-5}\) (2)
Từ (1) và (2) suy ra (Đpcm)
Chứng minh rằng nếu a/b =c/d và giả sử tất cả các tỉ số đều có nghĩa thì:
7a2+5ac/ 7a2 - 5ac = 7b2+5bd / 7b2- 5bd
Cho a/b =c/d chứng minh
a,(a+b/c+d)^2=a^2+b^2/c^2+d^2
b,7a^2+5ac/7a^2-5ac=7b^2+5bd/7b^2-5bd
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a, Ta có: \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
b, thay vào giống a là đc
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).CMR
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
bài ni dễ mà ko bt lm
thế mà cx hk đt toán