Tìm \(n\in Z\)để:
\(1+n^{2017}+n^{2018}\) là số nguyên tố
Tìm \(n\in Z\), để:
\(1+n^{2017}+2^{2018}\) là số nguyên tố
Tìm \(n\in N\) để:
P=n2018+n2017+1 là số nguyên tố.
Tìm tất cả các số nguyên dương n để \(1+n^{2017}+n^{2018}\) là số nguyên tố
Đặt A=1+n2017+n2018
*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)
Do đó: A là số nguyên tố
*Nếu: n>1
1+n2017+n2018
=(n2018-n2)+(n2017-n)+(n2+n+1)
=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)
Vì: n2016 chia hết cho n3
=> n2016-1 chia hết cho n3-1
=> n2016-1 chia hết cho (n2+n+1)
Mà: 1<n2+n+1<A=> A là số nguyên tố (k/tm đk đề bài số nguyên dương)
Vậy n=1
tìm n \(\in\)Z+ để 1+n2017+n2015 là số nguyên tố
ai làm đc giúp với, k cần đầy đủ, chỉ cần gợi ý thôi
đặt A=1+n^2017+n^2015
ta có x=1 thì A(1)=3 là SNT
Cho \(A=n^{2018}+n^{2017}+1\)
tìm số tự nhiên n sao cho A là số nguyên tố
Với n=0 thì \(A=1\) không là số nguyên tố
Với n=1 thì \(A=3\) là số nguyên tố
Với \(n\ge2\) ta có:
\(A=n^{2018}+n^{2017}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)
\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)
Tìm số tự nhiên n để A = \(n^{2018}+n^{2011}+1\)là số nguyên tố
Xét n = 0 thì \(A=1\left(l\right)\)
Xét n = 1 thì \(A=3\left(nhan\right)\)
Xét \(n\ge2\)
Ta có:
\(A=n^{2018}+n^{2011}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2011}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{672}-1\right)+n\left(\left(n^3\right)^{670}-1\right)+\left(n^2+n+1\right)\)
\(=\left(n^3-1\right)X+\left(n^3-1\right)Y+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)X'+\left(n^2+n+1\right)Y'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+Y'+1\right)\)
Với \(n\ge2\) thì A là tích của 2 số khác 1 nên không thể là số nguyên tố được.
Vậy n cần tìm là 1.
A=N2018+N2011+1
A=N<12018+12011>+1
A=2N+1
VẬY N=-1/2
TỚ KO BIẾT ĐÚNG KO NHÉ
Tìm số tự nhiên n để n2017 + n2015 +1 là số nguyên tố
tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố
tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố
Đinh Ngọc Dương OLM không đón mấy đứa thích gáy ngu nhưng không giải
Xét n=0 ( KTM )
Xét n=1 thỏa mãn
Xét n lớn hơn hoặc bằng 2:
\(A=n^{2017}+n^{2015}+1\)
\(=\left(n^{2017}-n\right)+\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2014}-1\right)+\left(n^2+n+1\right)\)
\(n^{2016}-1=\left[\left(n^3\right)^{672}-1^{672}\right]=\left(n^3-1\right)\cdot P=\left(n-1\right)\left(n^2+n+1\right)\cdot P=\left(n^2+n+1\right)\cdot P'\)
Tương tự:\(n^{2014}-1=\left(n^2+n+1\right)\cdot T'\)
Khi đóL\(A=\left(n^2+n+1\right)\left(P'+T'+1\right)\) là hợp số
Tìm \(n\in Z\)để
\(A=n^3-n^2+n-1\)là số nguyên tố
A=(n−1)(n2−3n+1)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
. Với n = 0, 1, 2 thì A không phải là số nguyên tố. Với n = 3 thì A = 2 là số nguyên tố.n>3⇒n2−3n+1=n(n−3)+1>1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
và n - 1 > 2 nên A là hợp số. Vậy n = 3 thỏa mãn bài toánBạn kham khảo nhé.
A=n3−4n2+4n−1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
=(n-1)(n^2+n+1)-4n(n-1) =(n-1)(n^2-3n+1)$Đến đây giải từng số bằng 1, số còn lại là SNT, rồi kết luận.
Bạn kham khảo nhé.
\(A=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2+1\right)\)
A là số nguyên tố \(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\\n^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(chon\right)\\n=0\left(loai\right)\end{cases}}\)
Vậy A là số nguyên tố <=> n = 2
tìm số nguyên n để B=\(\frac{3n+2017}{8n+2018}\)là số nguyên