Tính :
\(\frac{199\cdot2001-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)
tính nhanh
\(\frac{1999\cdot2001-1}{1998+1999\cdot2000}\)x \(\frac{7}{5}\)
. là nhân
x là nhân
\(\frac{1999\cdot2001-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)
\(=\frac{1999\cdot\left(2000+1\right)-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)
\(=\frac{1999\cdot2000+1999-1}{1998+1999.2000}\cdot\frac{7}{5}\)
\(=\frac{1999\cdot2000+1998}{1998+1999.2000}\cdot\frac{7}{5}=1\cdot\frac{7}{5}=\frac{7}{5}\)
1999.2001-1/1998+1999.2000 x 7/5
=1999.2001-(1999-1998)/1998+1999.2000 x7/5
=1999.2001-1999+1998/1998+1999.2000 x7/5
=1999(2001-1)+1998/1998+1999.2000x7/5
=1999.2000+1998/1998+1999.2000x7/5
=1x7/5=7/5
Tính nhanh :
\(\frac{\left(16-8:5\right)\cdot177}{199\cdot2001}\)
\(\frac{\left(16-8:5\right)x177}{199x2001}\frac{\left(16-16\right)x177}{199x2001}=\frac{0x177}{199x2001}=\frac{0}{199x2001}=0\)
Tính nhanh:
a,\(\frac{7}{13}\cdot\frac{7}{15}-\frac{5}{12}\cdot\frac{21}{39}+\frac{49}{91}\cdot\frac{8}{15}\)
b,\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
Tính nhanh:\(\frac{1999\times2001-1}{1998+1999\times2000}\) \(\times\) \(\frac{7}{5}\)
\(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{\frac{1}{1999}+\frac{2}{1998}+...+\frac{198}{2}+\frac{199}{1}}\) giải giúp mình với nhé
\(M=1+\frac{1}{199}+1+\frac{2}{198}+1+....+\frac{198}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}\)
\(=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)=200 T
\(S=\frac{T}{200T}=\frac{1}{200}\)
1. Tính tổng
\(\frac{1}{2}\cdot\frac{1}{3}\cdot+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}\)
* LÀM NỐT *
#Louis
1/2.1/3+1/3.1/4+1/4.1/5+...+1/8.1/9
=1/2.3=1/3.4+1/4.5+...+1/8.9\
=1/2-1/3+1/3-1/4=1/4-1/5+...+1/8.1/9
=1/2-1/9
=9/18-2/18
=7/18
HỌC TỐT NHA BẠN
Tính
1) \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{1999\sqrt{1998}+1998\sqrt{1999}}\)
2) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{1998}+\sqrt{1999}}\)
1) Có nhận xét sau:
\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)
\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)
2) Có nhận xét sau:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức
có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)
\(\frac{1999\times2001-1}{1998+1999\times2000}\)* 7 / 5
Tính nhanh:
CÁC BẠN GIÚP MK NHA,CẢM ƠN NHIỀU!
\(\frac{1999.2001-1}{1998+1999.2000}=\frac{1999.2001-\left(1999-1998\right)}{1998+1999.2000}=\frac{1999.2001-1999+1998}{1998+1999.2000}=\frac{1999.\left(20001-1\right)+1998}{1998+1999.2000}=\frac{1999.2000+1998}{1998+1999.2000}=1\)=> đáp án là 7/5
1999 x 2001 - 1 =3999998 ; 1998+1999 x 2000 =3999998
Suy ra : \(\frac{3999998}{3999998}\)=1 Suy ra 1x7/5 = 7/5
tính: P=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}\)
ed aakrta9 rf, j,ear ,eru8refj eru jrae ear9ffnxvn