\(b=\left(\frac{-1}{2}\right)^{10}\)\(a=\left(\frac{-1}{2}\right)^{2^5}\)So Sanh: a va b
\(A=\left(\frac{1}{1^2}-1\right)\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right);B=-\frac{1}{2}\). hãy so sanh a va b
\(A=\left(\frac{1}{1^2}-1\right)\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right)\)
\(=0.\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right)=0>-\frac{1}{2}\)
suy ra A>B
Cho \(A=\left(\frac{1}{^{2^2}}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)va\)\(B=-\frac{1}{2}.\)Hay so sanh A va B
Cho A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\) va B = \(\frac{-1}{2}\), So sanh A va B
A = \(-\frac{1.3}{2.2}.-\frac{2.4}{3.3}.\cdot\cdot\cdot-\frac{2013.2015}{2014.2014}=-\frac{\left(1.2.3...2013\right).\left(3.4.5....2015\right)}{\left(2.3....2014\right).\left(2.3....2014\right)}=-\frac{2.2015}{2014}=-\frac{4030}{2014}
Cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2014^2}-1\right)\)va \(B=-\frac{1}{2}\). So sanh A va B
cho so A=\(\frac{2013+\frac{1}{2}}{\left(2012+\frac{1}{2}\right)^2+2013+\frac{1}{2}}\)
B=\(\frac{2013+\frac{1}{3}}{\left(2012+\frac{1}{3}\right)^2+2013+\frac{1}{3}}\)
so sanh A va B
so sanh
a) \(\left(\frac{1}{16}\right)^{200}\)va\(\left(\frac{1}{2}\right)^{1000}\)
b) (-32)27 va (-18)39
a, Có : (1/60)^200 = [(1/2)^4]^200 = (1/2)^800
Vì 0 < 1/2 < 1 nên (1/2)^800 > (1/2)^1000
=> (1/16)^200 > (1/2)^1000
Tk mk nha
a) \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{2}\right)^{800}< \left(\frac{1}{2}\right)^{1000}\)
a) \(\left(\frac{1}{16}\right)^{200}=\frac{1}{16^{200}}\)
\(\left(\frac{1}{2}\right)^{1000}=\frac{1}{2^{1000}}\)
có : \(16^{200}=\left(2^4\right)^{200}=2^{800}\)
ta thấy \(2^{800}< 2^{1000}\)
\(\Rightarrow16^{200}< 2^{1000}\)
\(\Rightarrow\frac{1}{16^{200}}>\frac{1}{2^{1000}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{100}\)
Bai \(1:\)So sanh :
\(a\)) \(\left(-\frac{1}{5}\right)^{300}\) va \(\left(-\frac{1}{3}\right)^{300}\)
\(b\)) \(\left(-\frac{1}{2}\right)^{5^{1^3}}\)va \(\left(-\frac{1}{2}\right)^{3^{1^5}}\)
A=\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)\)
So sanh A voi \(-\frac{1}{9}\)
-A =( 1- 1/2 )(1 -1/3).....(1 -1/10)
= 1/2 . 2/3 ..... 9/10
= 1/10
-A = 1/10 nên A = -1/10
Vì 1/10 < 1/9 nên -1/10 > -1/9
Vậy A > -1/9
\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)=-\frac{1}{2}.-\frac{2}{3}...-\frac{9}{10}\)
\(=\frac{-\left(1.2...9\right)}{2.3...10}=\frac{-1}{10}\)
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)
Thật vậy, BĐT trên tương đương:
\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)
\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)
Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)
\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)
\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)