Tìm n
A ,5n= 625
B,6^2n = 1296
C,6^2n> 100
Đ, 25 <4n<100
Tìm số tự nhiên n sao cho:
a)3n+5 chia hết cho n
b)18-5n chia hết cho n
c)2n+7 chia hết cho n+1
d)2n+1 chia hết cho 6-n
e)3n chia hết cho 5-2n
3n + 5 ⋮ n (n \(\ne\) -5)
3n + 5 ⋮ n
5 ⋮ n
n \(\in\) Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 18 - 5n ⋮ n (n \(\ne\) 0)
18 ⋮ n
n \(\in\) Ư(18) = { -18; -9; -6; -3; -2; -1; 1; 2; 3; 6; 9; 18}
Vì n \(\in\) {1; 2; 3; 6; 9; 18}
c, 2n + 7 \(⋮\) n + 1 (n \(\ne\) -1)
2n + 2 + 5 ⋮ n + 1
2.(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -6; -2; 0; 4}
vì n \(\in\) N nên n \(\in\) {1; 5}
Tìm STN n sao cho:
a)3n+5 chia hết cho n
b)18-5n chia hết cho n
c)2n+7 chia hết cho n+7
d)2n+1 chia hết cho 6-n
3n chia hết cho 5-2n
Mơn nếu ai giúp nhé
tìm 2 chữ số tận cùng của 14^101 . 16^101 ; 5^2k ; 5^2k+1; 99^2n; 99^2n+1 ; 99^99^99 với n thuộc N; 6^5n ; 6^5n+1 : 6^6^6^6^6 với n thuộc N*
1. Cho n thuộc N . Tìm ƯCLN của
a, 2 số tự nhiên liên tiếp
b, 2n+1 và 3n+1
c, 2n+1 và 6n+5
d, 20n+1 và 15n+2
2. Tìm a,b thuộc N biết a.b =864 và ƯCLN (a,b)=60
3. Tìm n thuộc N để
a, 16-2n chia hết cho n-2
b, 5n-8 chia hết cho 4-n
4.Tìm a,b thuộc N biết a+b=66 , ƯCLN ( a,b ) =6 và 1 trong 2 số đó chia hết cho 5.
5. Biết a,b thuộc N , ƯCLN (a,b) =4 , a=8. Tìm b ( với a < b )
6.Cho a<b , a và b thuộc N ; ƯCLN (a,b) =16 và b =96 .Tìm a.
tìm 2 chữ số tận cùng
a ) 512n ; 512n+1 (n thuộc N*)
b ) 992n ; 992n+1 ; 99mũ 99 mũ 99
c ) 65n ; 65n+1 ; 6mũ 66 mũ 66
Cho a và b là hai số tự nhiên không nguyên tố cùng nhau. Tìm ƯCLN ( a;b ):
a, a = n+1 ; b = n+6
b, a = 2n + 1; b = n+4
c, a = 4n + 3; b = 5n+1
Cho a và b là hai số tự nhiên không nguyên tố cùng nhau. Tìm ƯCLN ( a;b ):
a, a = n+1 ; b = n+6
b, a = 2n + 1; b = n+4
c, a = 4n + 3; b = 5n+1
a,
Gọi UCLN của a, b là d
Ta có:
a chia hết cho d => n+1 chia hết cho d
b chia hết cho d=> n + 6 chia hết cho d
=> n + 6 - (n+1) chia hết cho d
=>5 chia hết cho d
Mà d lớn nhất
=> d = 5
Vậy UCLN của a, b = 5
b,
Gọi UCLN của a, b là d
Ta có:
a chia hết cho d =>2n+1 chia hết cho d
b chia hết cho d=> n + 4 chia hết cho d => 2(n+4) chia hết cho d=>2n+8 chia hết cho d
=>2n + 8 - (2n+1)chia hết cho d
=7 chia hết cho d
Mà d lớn nhất
=> d = 7
Vậy UCLN của a, b = 7
c,
Gọi UCLN của a, b là d
Ta có:
a chia hết cho d =>4n+3 chia hết cho d=>5(4n+3) chia hết cho d=>20n + 15 chia hết cho d
b chia hết cho d=>5n + 1 chia hết cho d=>4(5n+1) chia hết cho d=>20n+4 chia hết cho d
=>20 + 15 - (20n+4) chia hết cho d
=>11 chia hết cho d
Mà d lớn nhất
=> d = 11
Vậy UCLN của a, b = 11
a) 5n – 6 là bội của n
b) 2n – 1 là ước của 4n - 3
c) 5n + 2 2n – 9Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$