Bài 3 : (1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/99.101)
bài 4:
(x-3)(x+5)/(x-2)^2 <0
B1:Tính nhanh:
a)M= -1/3 . 141/17 - 39/3 . -1/17
b)N= -9/16 . 13/3 - (-3/4)^2 . 19/3
c)P=(1+1/1.3) (1+1/2.4) (1+1/3.5)......(1+1/99.101)
B2:Tìm x,biết
a)1/2+3/2:x=1/4
b)3/4+1/4.x=7
c)1/2.4 + 1/4.6 +.........+1/(2x-2).2x = 11/48
B3:Tìm x,biết
a)(x-1/2)^2=1/81
b)x+x(1+1/x)+x(1+2/x)=1/3
c)2/x+4=3/x+5
A= 1+2+2^2+...+2^2018
B= 3+3^2+3^3+...+3^2017
C= 1+5^2+5^4+...+5^2018
D= 1.3+2.4+3.5+...+99.101
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left[2+2^2+...+2^{2019}\right]-\left[1+2+2^2+...+2^{2018}\right]\)
\(A=2^{2019}-1\)
#)Giải :
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+2^4+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(B=3+3^2+3^3+...+3^{2017}\)
\(3B=3^2+3^3+3^4+...+3^{2018}\)
\(3B-B=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2B=3^{2018}-3\)
\(B=\frac{3^{2018}-3}{2}\)
\(C=1+5^2+5^4+...+5^{2018}\)
\(5^2C=5^2+5^4+...+5^{2020}\)
\(5^2C-C=\left[5^2+5^4+...+5^{2020}\right]-\left[1+5^2+5^4+...+5^{2018}\right]\)
\(24C=5^{2020}-1\)
\(C=\frac{5^{2020}-1}{24}\)
Tính
A=(1-1/2).(1-1/3).(1-1/4).....(1-1/100)
B= (1+1/1.3).(1+1/2.4).(1+1/3.5).....(1+1/99.101)
Bài 1: Tính tổng
a, 2\1.3+2\3.5+2\5.7+.......+2\99.101
b, 5\1.3+5\3.5+5\5.7+......+5\99.101
Bài 2: CMR phân số 2n+1\3n+2 là phân số tối giản
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
B1:Tính nhanh:
a)M= -1/3 . 141/17 - 39/3 . -1/17
b)N= -9/16 . 13/3 - (-3/4)^2 . 19/3
c)P=(1+1/1.3) (1+1/2.4) (1+1/3.5)......(1+1/99.101)
B2:Tìm x,biết
a)1/2+3/2:x=1/4
b)3/4+1/4.x=7
c)1/2.4 + 1/4.6 +.........+1/(2x-2).2x = 11/48
B3:Tìm x,biết
a)(x-1/2)^2=1/81
b)x+x(1+1/x)+x(1+2/x)=1/3
c)2/x+4=3/x+5
Giải gấp hộ mk cái mấy bn ơi
1. a, M = -\(\dfrac{1}{3}.\dfrac{141}{17}-\dfrac{39}{3}.\left(-\dfrac{1}{17}\right)\)
= -\(\dfrac{1}{17}.\dfrac{141}{3}-\dfrac{39}{3}.\left(-\dfrac{1}{17}\right)\)
= -\(\dfrac{1}{17}\left(\dfrac{141}{3}-\dfrac{39}{3}\right)\)
= -\(\dfrac{1}{17}.34\)
= -2
@Lê Thị Hồng Ngát
1. b, \(\dfrac{3}{4}+\dfrac{1}{4}x=7\)
<=> \(\dfrac{1}{4}x=\dfrac{25}{4}\)
<=> x = 25
@Lê Thị Hồng Ngát
1. b, N = -\(\dfrac{9}{16}.\dfrac{13}{3}-\left(-\dfrac{3}{4}\right)^2.\dfrac{19}{3}\)
= -\(\dfrac{9}{16}.\dfrac{13}{3}+\dfrac{9}{16}.\dfrac{19}{3}\)
= \(\dfrac{9}{16}\left(-\dfrac{13}{3}+\dfrac{19}{3}\right)\)
= \(\dfrac{9}{16}.2\)
= \(\dfrac{9}{8}\)
@Lê Thị Hồng Ngát
Bài 5 :
a) Chứng minh rằng : 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/199.200/ 1/101 + 1/102 + 1/103 + ... + 1/200 = 1
b) So sánh A = 1 mũ 2/1.2 x 2 mũ 2/2.3 x 3 mũ 2/3.4 x 99 mũ 2/99.100 x 100 mũ 2/100.101 và B = 2 mũ 2/1.3 x 3 mũ 2/2.4 x 4 mũ 2/3.5
x .... x 59 mũ 2/58.60
Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
1, (x-3)(x-5)<0
2, 2/1.3+2/3.5+2/5.7+...+2/99.101
3, 5/1.3+5/3.5+5/5.7+...+5/99.101
4, Chứng tỏ rằng phân số 2n+1/3n+2 là phân số tối giản
5, cho A=n+2/n-5(n thuộc Z;n khác 5) Tìm xđể A thuộc Z
mình làm câu 4 nha
Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)
=>(2n+1) : d và (3n+2) : d
=>3.(2n+1) :d và 2.(3n+2): d
=>(6n+3) :d và (6n+4) : d
=> ((6n+4) - (6n+3)) : d
=>1 :d => d=1
Vì d là ước chung của 2n+1/3n+2
mà d =1 => ƯC(2n+1/3n+2) =1
Vậy 2n+1/3n+2 là phân số tối giản
Tick mình nha bạn hiền .
Bài 1 : Tính tổng
1+2+3+4+....+n
Bài 2 : Tính A = 1.2+2.3+3.4+....+(n-1).n
Bài 3 Tính A = 1.3+2.4+3.5+.....+(n-1).(n+1)
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
(1/1.3+1/3.5+.....+1/99.101) -X =2
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)-X=2\)
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)-X=2\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)-X=2\)
\(\frac{1}{2}.\left(1-\frac{1}{101}\right)-X=2\)
\(\frac{1}{2}.\frac{100}{101}-X=2\)
\(\frac{50}{101}-X=2\)
\(X=\frac{50}{101}-2\)
\(X=\frac{-152}{101}\)