Cho hình thang ABCD ( AB//CD ). Gọi E,F,I lần lượt là trung điểm AD,BC,AC
a/ cm E,I,F thẳng hàng
b/ Kẻ AO//BF (O thuộc EF cm AO=BC:2
Cho hình thang ABCD(AB//CD) có đường cao AH=3cm, AB=5cm, DC=8cm. Gọi E,F,I lần lượt là trung điểm của AD, BC, AC
a) Chứng minh E,I,F thẳng hàng
b)Tính diện tích ABCD
c) So sánh diện tích ADC và diện tích 2ABC
Bài 8: Cho hình thang ABCD (AB // CD). Gọi E, F, K lần lượt là trung điểm của AD, BC, BD
a) Chứng minh EK // AB // KF và E, F, K thẳng hàng
b) Gọi I là giao điểm của EF và AC. Chứng minh rằng IA = IC
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .
1) C/m M, N lần lượt là trung điểm của AD và BC.
2) tứ giác EFQP là hình gì ?
3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm
4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.
2) AM = MN = NC .
3) 2EN = DM + BC .
4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.
1) C/m E ,F ,I thẳng hàng .
2) tính \(S_{ABCD}\)
3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính EF≤ AB+CD / 2
3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2
cho hình vuông ABCD gọi E,G,F lần lượt là các điểm thuộc AD, AB, BC . QuaG kẻ đường thẳng đi qua trung điểm EF cắt CD tại K. CM EF=GK
1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC
2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF
3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF
4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN
5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE
Bài 2; Cho hình thang ABCD ( AB // CD ). Gọi E, F lần lượt là trung điểm của AD và BC. Đường thẳng EF cắt BD tại I, cắt AC tại K.
A, CM; AK = KC; BI = ID
B, Cho AB = 6 cm; CD = 10 cm; Tính EI; KF, IK.
Cho hình thang ABCD có AB song song với CD Gọi E , F , I , K lần lượt là trung điểm của AB CD BC AC BD tính EI , IF , EF , EK biết AB = 8 cm CD = 6 cm
Cho hình bình hành ABCD, gọi E, F lần lượt là trung điểm của AD, BC. AC cắt BC tại O, cắt BE, DF lần lượt tại P,Q.
a) CM: AP=PQ=QC
b) M thuộc CD, I, K lần lượt là điểm đối xứng M qua E, F. CM: I, K thuộc AB
c) CM: AI+AK không đổi khi M thuộc AB
cho hình vuông ABCD . gọi E,D,F lần lượt là các điểm thuộc AD, AECB, BC. qua kẻ đường thẳng vuông với EF cắt CD ở K . CM EF=GH