Tìm x, y là số nguyên dương thoả mãn:
\(x^2+2x-4y^2+4y=3\)
tìm hết tất cả các bộ số nguyên dương (x;y) thoả mãn
x^2+2y^2-3xy+2x-4y+3=0
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)
\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)
\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)
\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)
\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)
Đến đây ta thấy vô lý
P/S:is that true ?
x,y nguyên dương thoả mãn x^2+y^2+4=2xy+4x+4y .chứng minh x/2 và y/2 là các số chính phương
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
\(x^2+y^2+4=2xy+4x+4y\)
<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)
<=> \(\left(x-y-2\right)^2=8y\)
<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)
=> \(\frac{y}{2}\)là số chính phương
CMTT x/2 là số chính phương
Tìm các số nguyên dương x, y thoả mãn:
a)\(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)
b)\(x^3-y^3-1=3xy\)
c)\(x^3+1=4y^2\)
Tìm x,y nguyên dương thỏa mãn
\(x^2+2x-4y^4+4y=3\)
Tìm số nguyên dương x thoả mãn: |x-2y+1|.| x+4y+3 | = 20
Lời giải:
Với $x,y$ là số nguyên dương thì $|x-2y+1|, |x+4y+3|$ là số nguyên dương. Mà $|x-2y+1|.|x+4y+3|=20$ nên $|x-2y+1|, |x+4y+3|$ là ước nguyên dương của 20.
$(x-2y+1)+(x+4y+3)=2x+2y+4$ chẵn nên $|x-2y+1|, |x+4y+3|$ cùng tính chẵn lẻ.
Do đó xảy ra các TH sau
TH1: $|x-2y+1|=2, |x+4y+3|=10$
$\Rightarrow x-2y+1=\pm 2; x+4y+3=\pm 10$
Nếu $x-2y+1=2, x+4y+3=10$
$\Rightarrow x=1+2y, x=7-4y$
$\Rightarrow 1+2y=7-4y\Rightarrow y=1\Rightarrow x=3$
Nếu $x-2y+1=-2, x+4y+3=10$
$\Rightarrow x=-3+2y, x=7-4y$
$\Rightarrow -3+2y=7-4y\Rightarrow y=\frac{2}{3}$ (không tm)
Nếu $x-2y+1=2, x+4y+3=-10$
Nếu $x-2y+1=-2, x+3y+3=-10$
Bạn tính toán tương tự
TH2: $|x-2y+1|=10, |x+4y+3|=2$
Bạn tính toán tương tự.
Tìm \(x,y\) nguyên dương thõa mãn: \(x^2-y^2+2x-4y-10=0\)
Có : x2 - y2 + 2x - 4y - 10 = 0
<=> (x + 1)2 - (y + 2)2 = 7
<=> (x + y + 3)(x - y - 1) = 7
Lập bảng ta được
x + y + 3 | 7 | 1 | -1 | -7 |
x - y - 1 | 1 | 7 | -7 | -1 |
x | 3 | 3 | -5 | -5 |
y | 1 | -5 | 1 | -5 |
Vì x,y \(\inℕ^∗\) nên (x;y) = (3;1) là giá trị thỏa mãn
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
Tìm (x, y) nguyên dương thõa mãn: \(x^2+2y^2-3xy+2x-4y+3=0\)