1 số chính phương có 4 cs tận cùng bằng nhau. Tìm cs tận cùng của số chính phương ấy
Câu 1:Tìm n thuộc N,biết n^2+2010 là số chính phương.
Câu 2: Tìm số chính phương có 4 chữ số, biết chữ số tận cùng là số nguyên tố, tổng các chữ số là số chính
Câu 3: tìm số có 4 cs biết số đò là số chính phương và lập phương của 1 số.
Câu 4Tìm a,b,c thuộc P,biết a^b+b^a=c.
1)Tìm số chính phương có 4 chữ số, chia hết cho 47, có chữ số tận cùng bằng 9.
2)Tìm số chính phương có 4 chữ số có 2 chữ số tận cùng bằng nhau và khác 0.
Giup m nhé rùi m tick cho làm cả cach làm nhé
CMR 1 số chính phương có tận cung là 5 thì chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tân cùng là 6 thì chữ số hàng chục là chữ số lẻ
CMR 1 số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn
CMR 1 số chính phương có tận cùng là 0 thì tận cùng bằng chẵn chữ số 0
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
Hãy tìm một số chính phương có tận cùng bằng 4 chữ số giống nhau ko
Tìm số tự nhiên có 2 chữ số sao cho tổng các số tự nhiên liên tiếp từ 1 đến số này là một số có 2 cs tận cùng bằng chính số cần tìm
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
Tìm số chính phương có 4 chữ số tận cùng giống nhau
tìm 1 số chính phương có 4 chữ số,có 2 chữ số tận cùng =nhau và khác 0
Tìm số chính phương có 4 chữ số mà có 3 chữ số tận cùng giống nhau?
Giả sử ¯¯¯¯¯¯¯¯¯¯abbb=(¯¯¯¯¯¯¯¯mn)2=(10m+n)2abbb¯=(mn¯)2=(10m+n)2 (1⩽a⩽91⩽a⩽9 ; b∈{0;1;4;5;6;9}b∈{0;1;4;5;6;9} ; 3⩽m⩽93⩽m⩽9 ; 0⩽n⩽90⩽n⩽9)
Xét các trường hợp :
1)1) bb lẻ (b∈{1;5;9}b∈{1;5;9}) : Khi đó nn cũng lẻ và ta có
(10m+n)2=100m2+20mn+n2=¯¯¯¯¯¯¯¯¯¯abbb(10m+n)2=100m2+20mn+n2=abbb¯
Nhận xét rằng hai chữ số sau cùng của 100m2100m2 là ¯¯¯¯¯¯0000¯ ; của 20mn20mn là ¯¯¯¯¯¯p0p0¯ (pp chẵn) ; của n2n2 là ¯¯¯¯¯qbqb¯ (qq chẵn vì nn lẻ) ⇒⇒ cs hàng chục của (10m+n)2(10m+n)2 là số chẵn (vô lý).Vậy TH này không thể xảy ra.
2)2) b=0b=0 : Khi đó (10m)2=100m2=¯¯¯¯¯¯¯¯¯¯¯a000⇒m2=¯¯¯¯¯¯a0(10m)2=100m2=a000¯⇒m2=a0¯ (vô nghiệm vì 3⩽m⩽93⩽m⩽9)
3)3) b=4b=4 : Khi đó n=2n=2 hoặc n=8n=8
+ n=2n=2 : Ta có (10m+2)2=100m2+40m+4=¯¯¯¯¯¯¯¯¯¯¯a444=1000a+444⇒10m2+4m=100a+44(10m+2)2=100m2+40m+4=a444¯=1000a+444⇒10m2+4m=100a+44
VP chia 1010 dư 4⇒4⇒ VT chia 1010 dư 44 ⇒⇒ m=6m=6 (vì 3⩽m⩽93⩽m⩽9).Thử lại 622=3844622=3844 (loại)
+ n=8n=8 : Ta có (10m+8)2=100m2+160m+64=¯¯¯¯¯¯¯¯¯¯¯a444=1000a+444⇒10m2+16m=100a+38(10m+8)2=100m2+160m+64=a444¯=1000a+444⇒10m2+16m=100a+38
VP chia 1010 dư 8⇒8⇒ VT chia 1010 dư 8⇒m=38⇒m=3 và m=8m=8.Thử lại 382=1444382=1444 (thỏa mãn) ; 882=7744882=7744 (loại)
4)4) b=6b=6 : Khi đó n=4n=4 hoặc n=6n=6
+ n=4n=4 : (10m+4)2=100m2+80m+16=¯¯¯¯¯¯¯¯¯¯¯a666⇒10m2+8m=100a+65(10m+4)2=100m2+80m+16=a666¯⇒10m2+8m=100a+65 (vô nghiệm vì VT chẵn, VP lẻ)
+ n=6n=6 : (10m+6)2=100m2+120m+36=¯¯¯¯¯¯¯¯¯¯¯a666⇒10m2+12m=100a+63(10m+6)2=100m2+120m+36=a666¯⇒10m2+12m=100a+63 (vô nghiệm vì VT chẵn, VP lẻ)
Vậy chỉ có 11 đáp án duy nhất là 1444=382