Cho hình vẽ, chứng minh: Ax song song By ( Ax//By )
cho hình vẽ, tính x để Ax song song với By, chứng minh Cz song song với By
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn nửa đường thẳng Ax, By, Cz, Dt ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz và Dt tại A’, B’, C’ và D’.
a) Chứng minh: mặt phẳng (Ax, By) song song với mặt phẳng (Cz, Dt)
b) Gọi I = AC ∩ BD, J = A’C’ ∩ B’D’. Chứng minh: IJ song song với AA’.
c) Cho AA’ = a, BB’ = b, CC’ = c. Hãy tính DD’.
a) Do ABCD là hình bình hành, nên AB // DC
=> AB // (Cz, Dt) (1)
Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)
Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)
b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)
Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)
Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.
=> J là trung điểm của A’C’ ( tính chất hình bình hành).
Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang
=> IJ// AA’// CC’ ( đpcm).
c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)
IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)
Từ đây suy ra: DD’ + BB’ = AA’ + CC’
=> DD’ = AA’ + CC’ – BB’ = a + c – b
Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng (α) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A’, B’, C’ và D’.
a) Chứng minh rằng (Ax,By) // (Cz,Dt) và (Ax,Dt) // (By,Cz)
b) Tứ giác A'B'C'D' là hình gì?
c) Chứng minh AA′ + CC′ = BB′ + DD′.
a) Ta có:
⇒ Ax // (Cz,Dt)
Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)
Tương tự ta có (Ax, Dt) // (By,Cz)
b)
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra
Tương tự ta có:
cho hình vẽ, tính x để Ax song song với By, chứng minh Cz song song với By
1) a) Vẽ đồ thị của hàm số y = \(\dfrac{2}{3}\) x .
b) Tìm x , biết :
2x + \(\dfrac{3}{4}\) = \(\dfrac{-1}{2}\)
c) Tìm x , y biết
x - y = 12 và x . 2 = y . 4
2) Vẽ đoạn thẳng AB = 6cm . Có M là trung điểm . Vẽ tia Ax , By nằm trên 2 nửa mặt phẳng bờ AB và Ax vuông góc với AB , By vuông góc với AB .
a) Tính NB và MB ? Chứng minh Ax song song với By
b) Qua M kẻ đường thẳng cắt Ax và By tại P và Q . Chứng minh AQ song song với BP .
HELP ME !!!!!!!!!!!!!!
Bài 1:
a) Đồ thị của hàm số y = \(\dfrac{2}{3}\)x là đường thẳng OA với A(3 ; 2)
b) \(2x+\dfrac{3}{4}=\dfrac{-1}{2}\)
\(2x=\dfrac{-1}{2}-\dfrac{3}{4}\)
\(2x=-\dfrac{5}{4}\)
\(x=-\dfrac{5}{4} :2\)
\(x=-\dfrac{5}{8}\)
c) Ta có: x.2 = y.4 \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{x-y}{4-2}=\dfrac{12}{2}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.4=24\\y=6.2=12\end{matrix}\right.\)
Vậy x = 24; y = 12.
Bài 2:
a) NB?
Vì M là trung điểm của AB
nên MA = MB = \(\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}Ax\perp AB\\By\perp AB\end{matrix}\right.\)
\(\Rightarrow Ax//By\)
b) Xét hai tam giác vuông AMP và BMQ có:
MA = MB (gt)
\(\widehat{AMP}=\widehat{BMQ}\) (đối đỉnh)
\(\Rightarrow\Delta AMP=\Delta BMQ\left(cgv-gn\right)\)
\(\Rightarrow\) MP = MQ
Xét hai tam giác AMQ và BMP có:
MA = MB (gt)
\(\widehat{AMQ}=\widehat{BMP}\) (đối đỉnh)
MQ = MP (cmt)
\(\Rightarrow\Delta AMQ=\Delta BMP\left(c-g-c\right)\)
\(\Rightarrow\widehat{AQM}=\widehat{BPM}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AQ // BP (đpcm).
1) a) Vẽ đồ thị của hàm số y =\(\dfrac{2}{3}\) x .
b) Tìm x , biết :
2x + \(\dfrac{3}{4}\) = \(\dfrac{-1}{2}\)
c) Tìm x , y biết
x - y = 12 và x . 2 = y . 4
2) Vẽ đoạn thẳng AB = 6cm . Có M là trung điểm . Vẽ tia Ax , By nằm trên 2 nửa mặt phẳng bờ AB và Ax vuông góc với AB , By vuông góc với AB .
a) Tính NB và MB ? Chứng minh Ax song song với By
b) Qua M kẻ đường thẳng cắt Ax và By tại P và Q . Chứng minh AQ song song với BP .
HELP ME !!!!!!!!!!!!!!
1)
a)
_ Xác định điểm A(3;2)
_ Đường thẳng OA là đồ thị của hàm số \(y=\dfrac{2}{3}x\)
a)Hàm số y=\(\dfrac{2}{3}\)x
Đi qua x=0 \(\rightarrow\)y=0 0(0:0)
x=3\(\rightarrow\)y=2 A(3:2)
Cho hình vẽ sau, với các kí hiệu các góc bằng nhau. Hãy chứng tỏ rằng:
a) Ax song song với Cz.
b) By song song với Cz.
c) Ax song song với By.
Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Xz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng \(\left(\alpha\right)\) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A', B', C' và D'
a) Chứng minh rằng (Ax, By) // (Cz, Dt) và (Ax, Dt) // (By, Cz)
b) Tứ giác A'B'C'D' là hình gì ?
c) Chứng minh AA' + CC' = BB' + DD'
Cho hình vẽ biết: a. Ax song song với By; góc xAo=35 độ; góc AOB= 75 độ. Tính góc OBy biết góc AOB= góc xAO+180 độ - góc OBy. Chứng minh Ax song song với By
Ai trả lời nhanh mik sẽ tick cho
kẻ tia Ot // Ax mà Ax//By
nên Qt//Ax//By
Ay//Ot
=>g xAO + g AOt=1800 ( hai góc trong cùng phía)
1050+ g AOt=1800
=>g AOt=1800-1050
=750
ta lại có gAOB=gAOt+gBOt
800=750+gBOt
=>gBOt=800-750=50
ta có Ot//By
=>gBOt+gOBy=1800(trong cùng phía)
50+gOBy=1800
=>gOBy=1800-50=1750