B=1/1.4+1/4.7+1/7.10+......+1/2021.2014
1.
a) 1/1.4+1/4.7+1/7.10+...+1/100.103
b)-1/3+-1/15+-1/35+-1/63+...+-1/9999
2.
3/1.4+3/4.7+3/7.10+...+3/94.97+3/97.100
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
B=1/1.4+1/4.7+1/7.10+...+1/2008.2011. Chứng minh rằng B<1
\(B=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{3}.\dfrac{2010}{2011}=\dfrac{2010}{6033}\)
Lại có : \(1=\dfrac{6033}{6033}\Rightarrow B< 1\)
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2008.2011}\)
\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{3}.\dfrac{2010}{2011}\)
\(=\dfrac{2010}{6033}=\dfrac{670}{2011}\)
Vì phân số \(\dfrac{670}{2011}\) có tử số nhỏ hơn mẫu số ⇒ \(\dfrac{670}{2011}< 1\) hay \(B< 1\)
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100=0,33.x/2009
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}=\frac{0,33\cdot x}{2009}\cdot3\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,99\cdot x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,99x}{2009}\)
\(\frac{99}{100}=\frac{0,99x}{2009}\)
=>0,99x*100=2009*99
99x=2009*99
=>x=2009
Vậy x=2009
\(0,33\cdot\frac{x}{2009}\) hay \(\frac{0,33\cdot x}{2009}\)
[1/1.4+1/4.7+1/7.10+...+1/97.100=0,33.x/2009
1/1.4+1/4.7+1/7.10+...+1/x(x+3)=6/19
\(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\times\frac{x+3-1}{x+3}=\frac{6}{19}\)
\(\frac{x+3-1}{x+3}=\frac{6}{19}\div\frac{1}{3}\)
\(\frac{x+2}{x+3}=\frac{18}{19}\)
x = 16
1/1.4 + 1/4.7 + 1/7.10 ... + 1/x.(x+3) = 125/376
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
=>\(3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
=>\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
=>\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
=>\(1-\frac{1}{x+3}=\frac{375}{376}\)
=>\(\frac{1}{x+3}=1-\frac{375}{376}\)
=>\(\frac{1}{x+3}=\frac{1}{376}\)
=>x+3=376
=>x=376-3
=>x=373
Vậy x=373
1/1+4 +1/4×7 +1/7×10+.....+1/x×(x+3)=16/49
chứng tỏ rằng:1/1.4+1/4.7+1/7.10+...+1/67.70<1
A=1/2+ 1/6+1/12+...+1/132
B= 5/1.4+ 5/4.7+5/7.10+...+5/97.100
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\)\(\frac{1}{132}\)= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)\(=1-\frac{1}{12}=\frac{11}{12}\)
B = 5/1.4 + 5/4.7 + 5/7.10 + ... + 5/97.100
B = 5/3.(3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100)
B = 5/3.(1 - 1/4 +1/4 -1/7 +1/7 - 1/10 + ... + 1/97 - 1/100)
B = 5/3.(1 - 1/100)
B = 5/3.99/100
B = 33/20
Tìm x biết : (1/1.4+1/4.7+1/7.10+....+1/97.100) = 0,33.x/2009