Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Viết Minh Hiếu
Xem chi tiết
Phạm Thị Vi Hoa
Xem chi tiết
Truong Thi To Trinh
24 tháng 8 2017 lúc 20:51

vì (x-2016)^2016 >= 0 vs mọi x

    (y-2017)^2018>= 0 vs mọi y

    /x+y-z/ >= 0 vs mọi x,y,z

mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên ​\(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)

Truong Thi To Trinh
24 tháng 8 2017 lúc 20:52

mà x+y=2016+2017=4033

\(\Rightarrow\)4033-z=0

z=4033

vậy x=2016 y=2017 z=4033

Phạm Nguyễn Thanh Trúc
Xem chi tiết
Đoàn Đức Hà
16 tháng 1 2021 lúc 18:17

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

Khách vãng lai đã xóa
 ✪ B ✪ ả ✪ o  ✪
Xem chi tiết
Dung
21 tháng 10 2016 lúc 13:32

vì giá trị tuyệt đối không nhận giá trị âm nên

x-2015=0;x-2016=0;y2017=0;y-2018=0

=>x=2015;x=2016;y=2017;y=2018

Vì x và y không nhận hai giá trị cùng một lúc nên x y không tồn tại

 

Phạm Hiều Linh
Xem chi tiết
Phạm Hiều Linh
6 tháng 7 2017 lúc 20:06

cau 2 =0 nha giai chi tiet

Kurosaki Akatsu
6 tháng 7 2017 lúc 20:08

1) (x + 2016)2016 + |y - 2017|2017 = 0

\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)

Kurosaki Akatsu
6 tháng 7 2017 lúc 20:10

2) |x + 1|2018 + \(\sqrt{3x-1}\) = 0

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|^{2018}=0\\\sqrt{3x-1}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1=0\\3x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)(không thõa mãn)

Vậy , không có giá trị x nào thõa mãn phườn trình trên .

knight_Lucifer
Xem chi tiết
trần gia bảo
Xem chi tiết
ngo thao
Xem chi tiết
Hoàng Đình Đại
19 tháng 3 2018 lúc 15:19

\(\left|x-2016\right|+2017\)

giá tị nhỏ nhất là  2017 vì  \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0 

mà ở ngoài lại là +2017  nên biểu thức có giá trj = 0  suy ra 0+2017 =2017

biểu thức tiếp 

= 2018

Ngọc Lục Bảo
Xem chi tiết
Hoàng Phúc
19 tháng 6 2016 lúc 15:20

\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)

Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)

Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)