Tìm x,y. 2016(x-1)2016+2017(y-1)2018=0
Cho x,y>0 thỏa mãn
x^2015+y^2015=x^2016+y^2016=x^2017+y^2017
C/m: 1/x^2018+1/y^2018=1/x^2019+1/y^2019
Tìm x,y.z biết (x-2016)^2016+(y-2017)^2018 +/x-y+z/=0
vì (x-2016)^2016 >= 0 vs mọi x
(y-2017)^2018>= 0 vs mọi y
/x+y-z/ >= 0 vs mọi x,y,z
mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên \(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)
mà x+y=2016+2017=4033
\(\Rightarrow\)4033-z=0
z=4033
vậy x=2016 y=2017 z=4033
1) Tìm giá trị nhỏ nhất của biểu thức : A=|x-2016|+2017 / |x-2016| + 2018.
2) Tìm số nguyên x,y sao cho : x-2xy+y=0
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
Tìm x;y biết rằng:|x-2015|+|x-2016|+|y-2017|+|y-2018|=0
vì giá trị tuyệt đối không nhận giá trị âm nên
x-2015=0;x-2016=0;y2017=0;y-2018=0
=>x=2015;x=2016;y=2017;y=2018
Vì x và y không nhận hai giá trị cùng một lúc nên x y không tồn tại
tìm x y thỏa mãn;
1 (x+2016)2016 + |y-2017|2017 =0
2 |x+1|2018 +\(\sqrt{3y-1}\)
1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)
2) |x + 1|2018 + \(\sqrt{3x-1}\) = 0
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|^{2018}=0\\\sqrt{3x-1}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1=0\\3x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)(không thõa mãn)
Vậy , không có giá trị x nào thõa mãn phườn trình trên .
cho 0<x,y,z<=1 tìm GTLN của
x^2016 + y^2017 -z^2018 -xy -yz -zx.
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)
1.Tìm giá trị nhỏ nhất của biểu thức A=
|x-2016|+2017
|x-2016|+2018
2. Tìm số nguyên x,y sao cho x-2xy+y=0
Giúp vs mik tick cho
\(\left|x-2016\right|+2017\)
giá tị nhỏ nhất là 2017 vì \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0
mà ở ngoài lại là +2017 nên biểu thức có giá trj = 0 suy ra 0+2017 =2017
biểu thức tiếp
= 2018
Cho x+y+z=0 và xy+yz+zx=0 Tính: A=(x-1)^2016+y^2017+(z+1)^2018
\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
Mà \(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)
Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)
Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)