Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hân
Xem chi tiết
Lê Hoàng Phương Linh
Xem chi tiết
Spiritual gems
27 tháng 3 2017 lúc 21:22

Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B

Bùi Vương TP (Hacker Nin...
27 tháng 3 2017 lúc 21:27

Ta có:

2014A=20142014+ 2014/20142014+1=1+2013/20142014+1

2014B=20142013+2014/20142013+1=1+2013/20142013+1

vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B

suy ra A<B

phan chí tấn
Xem chi tiết
nghiem thi huyen trang
7 tháng 8 2017 lúc 11:54

ta thấy:

2^2014<2^2014+2

=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)

vậy......

Lê Quang Phúc
7 tháng 8 2017 lúc 11:58

Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .

22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.

=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)

Lê Quang Phúc
7 tháng 8 2017 lúc 12:01

1 cách dễ hơn nè:

Có 22014+1 = 22014 + 1 ( tử và tử bằng nhau )

22014<22014+2

=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)

Nguyễn Dương
Xem chi tiết
Trà My
1 tháng 7 2016 lúc 17:08

Sai rồi nhé bạn 

Nguyễn Dương
1 tháng 7 2016 lúc 17:09

trà my Thế bạn làm thế nào

Trà My
1 tháng 7 2016 lúc 17:26

Đầu tiên bạn phải chứng minh: nếu a/b>1 thì a/b>(a+m)/(b+m)

Để mình chứng minh cho luôn nè:

A/b>1

=>a>b

=>am>bm (m thuộc N)

=>ab+am>ab+bm

=>a(b+m)>b(a+m)

=>[a(b+m)]/[b(b+m)]>[b(a+m)]/[b(b+m)]

=>a/b>(a+m)/(b+m)

Rồi bạn cộng tử của A với 2013 và mẫu của A với 2013, khi đó ta được 1 phân số bé hơn A. Rút gọn phân số đó thì ta được B.

Vậy suy ra A>B

Ngọc Nguyễn
Xem chi tiết
Thanh Hằng Nguyễn
29 tháng 6 2017 lúc 20:40

Đặt :

\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}\)\(=1+\frac{1}{2^{2014}+1}\)

\(1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+2}\Leftrightarrow A>B\)

le thi khuyen
Xem chi tiết
Phạm Văn Đoàn
4 tháng 4 2016 lúc 17:38

Bạn xem lại đề câu a) cho rõ lại

Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1

                                 = x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1

                                 = x-1 =  2012

Phan Thị Ngọc Quyên
27 tháng 3 2017 lúc 19:46

phải là so sánh A với 2 mới đúng

Nết Đặng
Xem chi tiết
Kalluto Zoldyck
23 tháng 4 2016 lúc 20:27

B = 201410+2/201411+2 < 201411+2+4026 / 201412+2+4026

                                        = 201411+4028/201412+4028

                                        = 2014(201410+2)/2014(201411+2)

                                            = 201410+2/201411+2 = A

=> A > B

Triệu Minh Anh
Xem chi tiết
Lưu Cao Hoàng
Xem chi tiết
VN in my heart
3 tháng 5 2016 lúc 22:12

\(\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

so sánh \(\frac{1}{2^{2014}}\) và \(\frac{1}{2^{2014}+1}\)

ta có

\(2^{2014}<2^{2014}+1\) 

nên \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}=>1+\frac{1}{2014}>1+\frac{1}{2014+1}=>\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)