3x=5y, 6y=4z
x+y-z=2
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
Bài 1: Thực hiện phép tính
1, (3y +1/3y^4)^2
2, (-3x^2 -1/2x)^2
3, (x^2 +2x -3)^2
4, 3 (x+3) (x-3) - (x-9)^2
5, (x^n +x^n:1)^2
6, (5x-3y)^2 - (5x +3y)^2
7, (3x -x^2 +5)^2
8, (-2x +5y)^3
9, (1/3x^2 -5y^3)^3
10,(m^2n^3+n^2m^3) (m^2n^3 - n^2m^3)
11, (7x+6y)^2 - (7x +6y) (7x -6y)
12, (x-y)^2 +(y+x)^2 - (2x -y)^z
13, (a-b)^3 + (a+b)^3
14, (a-b)^3 -(a-b)^3
15, (3x-5y)^4 - (3x +5y)^4
Mọi người làm giúp mình vs
Tìm tất cả bộ số nguyên dương(x,y,z) thỏa \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\)là số hữu tỉ đồng thời (y+2)(4zx+6y-3) là số chính phương
Bạn tham khảo:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
Tìm tất cả bộ số nguyên dương (x;y;z) thỏa mãn \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỉ đồng thời (y+2)(4zx+6y-3) là số chính phương.
\(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=\frac{m}{n}\) (với m;n nguyên dương và nguyên tố cùng nhau)
\(\Leftrightarrow nx+ny\sqrt{2017}=my+mz\sqrt{2017}\)
\(\Leftrightarrow nx-my=\left(mz-ny\right)\sqrt{2017}\)
Vế trái hữu tỉ, vế phải vô tỉ nên dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}nx-my=0\\mz-ny=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{n}{m}=\frac{y}{x}\\\frac{n}{m}=\frac{z}{y}\end{matrix}\right.\) \(\Rightarrow\frac{y}{x}=\frac{z}{y}\Rightarrow y^2=zx\)
\(\left(y+2\right)\left(4zx+6y-3\right)=\left(y+2\right)\left(4y^2+6y-3\right)\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Leftrightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)\) là số chính phương khi và chỉ khi:
\(\left\{{}\begin{matrix}y+2=a^2\\4y^2+6y-3=b^2\end{matrix}\right.\) với a;b nguyên dương
Xét \(4y^2+6y-3=b^2\Leftrightarrow16y^2+24y-12=\left(2b\right)^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2b\right)^2\)
\(\Leftrightarrow\left(4y+3-2b\right)\left(4y+3+2b\right)=21\)
\(\Rightarrow y=2\) (thỏa mãn \(y+2=a^2\))
\(\Rightarrow xz=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy ta có các bộ \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)
Tích của đơn thức \(3x^2y^2\) và \(-x^3y^4\) là:
A. \(3x^5y^6\)
B. \(-3x^6y^6\)
C. \(-3x^5y^6\)
D. \(-3x^6y^8\)
Cho x, y, z là 3 số thỏa mãn điều kiện:
\(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)Tính
\(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)
Ta có : \(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)
\(\Rightarrow\left(4x^2+y^2+z^2-4xy-4zx+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\forall x,y,z\\\left(y-3\right)^2\ge0\forall y\\\left(z-5\right)^2\ge0\forall z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(2x-y-z\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-3-5=0\\y=3\\z=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=8\\y=3\\z=5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\left(1\right)\)
Lại có : \(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)
Thay \(\left(1\right)\)vào \(S\),ta được :
\(S=0^{2017}+\left(-1\right)^{2017}+1^{2017}\)
\(=0-1+1=0\)
Vậy \(S=0\)
Tìm x,y,z:
A=5x-6y và y = -2x
B=-x+5y và y = x+6
C=x+y+z và y=x , z = 2x
D=3x+2y+5z và y = x-3,z=x-4
E=2x+5y-7z và y=x-3,z=x-4
Các bạn giúp mình nha,đủ 5 câu mình cho 5 tick mỗi ngày .....
Tim x, y, z biết :
a) 2x = 5y và 4y - x= 4
b) 3:4:5 = x:y:z và 3x – 2z = 8
c) x:y:z = 2:5:3 và yz = 60 d) 2x = 6y =7z và x +2y – z = 6
e) 3x = 4y; 3y = 2z và 2x + 5z = 13 f) x + y = x.y = x : y
1. Cho \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\) và x + y + z = 48. Tìm x;y;z
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\). Chứng minh rằng \(\frac{5x-2y}{2018}=\frac{6y-5z}{2019}=\frac{4z-12y}{2020}\)
1.
Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)
tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi
1.
Ta có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}.\)
\(\Rightarrow\frac{7.\left(4x-5y\right)}{49}=\frac{9.\left(5z-3x\right)}{81}=\frac{11.\left(3y-4z\right)}{121}\)
\(\Rightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}=\frac{\left(28x-27x\right)-\left(35y-33y\right)+\left(45z-44z\right)}{251}=\frac{x-2y+z}{251}.\)
Đoạn này chịu rồi.