Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Baophuc Nguyendac
Xem chi tiết
Nguyễn Trần Hà Linh
Xem chi tiết
Đoàn Đức Hà
5 tháng 12 2021 lúc 17:11

\(9x^2+5y^2-6xy-6x-6y+20\)

\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)

\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)

Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).

Khách vãng lai đã xóa
ngô thành hải
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Chu Thị Tuyết Nhung
Xem chi tiết
Yen Nhi
13 tháng 12 2021 lúc 19:22

Answer:

\(B=-5x^2-5y^2+8x-6y-1\)

\(\Rightarrow B=\left(-5x^2+8x-\frac{16}{5}\right)+\left(-5y^2-6y-\frac{9}{5}\right)+4\)

\(\Rightarrow B=-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\)

Có:

\(\hept{\begin{cases}\left(x-\frac{4}{5}\right)^2\ge0\forall x\Rightarrow-5\left(x-\frac{4}{5}\right)^2\le0\\\left(y+\frac{3}{5}\right)^2\ge0\forall y\Rightarrow-5\left(y+\frac{3}{5}\right)^2\le0\end{cases}}\)

Do vậy:

\(-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\le4\forall x;y\) hay \(B\le4\)

Vậy "=" xảy ra khi:

\(\hept{\begin{cases}x-\frac{4}{5}=0\\y+\frac{3}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(B=4\) khi \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

\(C=-5x^2-2xy-2y^2+14x+10y-1\)

\(\Rightarrow5C=\left(-25x^2-10xy-y^2+70x+14y-49\right)+\left(-9y^2+36y-36\right)+80\)

\(\Rightarrow5C=-\left(5x+y-7\right)^2-9\left(y-2\right)^2+80\)

\(\Rightarrow C=-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{2}\left(y-2\right)^2+16\)

Có:

\(\hept{\begin{cases}\left(5x+y-7\right)^2\ge0\forall x;y\Rightarrow-\frac{1}{5}\left(5x+y-7\right)^2\le0\\\left(y-2\right)^2\ge0\forall y\Rightarrow-\frac{9}{5}\left(y-2\right)^2\le0\end{cases}}\)

Do vậy:

\(-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{5}\left(y-2\right)^2+16\le16\) hay \(C\le16\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}5x+y-7=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(C=16\) khi \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Xuân SƠn
Xem chi tiết
Nguyễn Minh Hiển
7 tháng 12 2015 lúc 20:04

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

Nguyễn Hương Ly
Xem chi tiết
Thái Hoàng
12 tháng 7 2016 lúc 20:47
B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

Ngô Thị Thùy Mai
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 11:52

Lời giải:
$A=(9x^2-6xy+y^2)+5y^2-6x-6y+20$

$=(3x-y)^2-2(3x-y)+4y^2-8y+20$

$=(3x-y)^2-2(3x-y)+1+(4y^2-8y+4)+15$

$=(3x-y-1)^2+(2y-2)^2+15\geq 15$

Vậy $A_{\min}=15$.

Giá trị này đạt tại $3x-y-1=2y-2=0$

$\Leftrightarrow (x,y)=(\frac{2}{3},1)$