\(\frac{3z-5y}{2}=\frac{5x-2z}{3}=\frac{2y-3x}{5}\)
va x+y+z =50
Tìm x,y,z biết:
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\) và x+y+z=-50
tìm x,y,z biết
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\) và x+y+z=50
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)
\(=\frac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)
=>3x-2y=2z-5x=5y-3z=0
3x-2y=0 => 3x=2y => x/2=y/32z-5x=0 => 2z=5x => z/5=x/2=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{50}{10}=5\)
=>x=10;y=15;z=25
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\) và x+y+z=-50
Tìm x , y , z ?
Tìm x,y,z biết \(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\) và x+y = 50 (nhân thêm số)
Tìm x,y,z
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\)
và \(x+y+z=-50\)
\(\frac{3z-5y}{2}=\frac{5x-2z}{3}=\frac{2y-3x}{3}\)
và x+y+z = 50
tìm x,y,z biết
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) va 10x-3y-2z=-4
\(\frac{3x-2y}{5}\)=\(\frac{2z-5x}{3}\)=\(\frac{5y-3z}{2}\)
x+y+z=50
Tìm x, y, z :
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\) và x + y + z = 100
\(\frac{15x-10y}{5^2}\)=\(\frac{6z-15x}{3^2}\)=\(\frac{10y-6z}{2^2}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{15x-10y}{5^2}\)=\(\frac{6z-15x}{3^2}\)=\(\frac{10y-6z}{2^2}\)=\(\frac{15x-10y+6z-15x+10y-6z}{5^2+3^2+2^2}\)=0
Suy ra 3x=2y \(\frac{x}{2}\)=\(\frac{y}{3}\)
2z=5x Suy ra \(\frac{z}{5}\)=\(\frac{x}{2}\)
5y=3z
Suy ra \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{5}\)
áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{2+3+5}\)=\(\frac{100}{10}\)=10
x/2=10 suy ra x=20
y/3=10 suy ra y=30
z/3=10 suy ra z=50
k cho mình nha <3