Chứng minh rằng 2018 mũ 2009 +1 chia hết cho 2019
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Chứng minh rằng 7 mũ 2020+7 mũ 2019-7 mũ 2018 chia hết cho 11
cho tổng s= 3 mũ 1+3 mũ 2+3 mũ 3+......+3 mũ 2017+3 mũ 2018+3 mũ 2019
chứng minh tổng s chia hết cho 13
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)
\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)
\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )
s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019
= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 ) ( 2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)
= 3( 1+ 3 +3^2 )+ 3^4( 1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)
= 13( 3+ 3^4+....+3^2017) => chia hết cho 13
học tốt
\(S=3^1+3^2+3^3+...+3^{2017}+3^{2018}+3^{2019}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)
\(=3\left(1+3+9\right)+3^4\left(1+3+9\right)+....+3^{2017}\left(1+3+9\right)\)
\(=3.13+3^4.13+...+3^{2017}.13\)
\(=13.\left(3+3^4+...+3^{2017}\right)⋮13\) (đpcm)
cho tổng s= 3 mũ 1+3 mũ 2+3 mũ 3+......+3 mũ 2017+3 mũ 2018+3 mũ 2019
chứng minh tổng s chia hết cho 3
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)
\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)
\(\Rightarrow2S=3^{2020}-3\)
\(\Rightarrow S=\frac{3^{2020}-3}{2}\)
từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3
Chứng minh rằng 3000 mũ 2009 trừ 1 chia hết cho 2009
ta có: \(3000^{2009}-1=\left(3000-1\right).\left(3000^{2008}+3000^{2007}+...+3000+1\right)\)
\(=2009.\left(3000^{2008}+3000^{2007}+...+3000+1\right)⋮2009\)
\(\Rightarrow3000^{2009}-1⋮2009\left(đpcm\right)\)
Chứng minh rằng: 2018^2019-1 chia hết cho 2017
Ảnh đại diện của bn đẹp z
CHỨNG MINH rằng 2009 mũ 2009 chia hết cho 2008
Chứng minh rằng 3000 mũ 2009 chia hết cho 2009
Cho S = 2 mũ 2020 + 2 mũ 2019+ 2 mũ 2018+ 2 mũ 2017+2 mũ 2016+2 mũ 2015 +2 mũ 2014+ 2 mũ 2013.
Chứng tỏ rằng S chia hết cho 15 ?
Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013
=22013(27+26+25+24+23+22+2+1)
=22013.255
Vì 255\(⋮\)15 nên 22013.255\(⋮\)15
hay S\(⋮\)15
Vậy S\(⋮\)15.