Xuống đường 4 số nguyên liên tiếp chia cho 4,8 và 24
chứng minh rằng
a) tổng của 3 số nguyên liên tiếp thì chia hết cho 3
c) tổng của 4 số nguyên liên tiếp thì không chia hết cho 4
b) tổng của 5 số nguyên liên tiếp thì chia hết cho 5
a, Gọi 3 số nguyên liên tiếp là : a ; a + 1 ; a + 2
Vậy tổng các số là : a + a + 1+ a + 2 = 3a + 3 \(⋮3\)
Vậy tổng 3 số nguyên liên tiếp thì chia hết cho 3
b, Gọi 4 số nguyên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3
Vậy tổng các số nguyên liên tiếp là : a + a + 1 + a + 2 + a + 3 = 4a + 6 ko \(⋮4\)
Vậy tổng 4 số nguyên liên tiếp ko chia hết cho 4
c, Gọi 5 số nguyên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ; a + 4
Vậy tổng 5 số nguyên liên tiếp là : a + a + 1 + a + 2 + a + 3 + a + 4 = 5a + 10 \(⋮5\)
Vậy tổng 5 số nguyên liên tiếp thì chia hết cho 5.
a) Ta gọi 3 số nguyên liên tiếp đó là : 3k+ 1 ; 3k+ 2 ; 3k+3
TA có : ( 3k + 1 ) + ( 3k + 2) + ( 3k+ 3)
=3k+3k+3k + ( 1+2+3)
=9k+6
Ta có 9K chia hết cho 3 ; 6 chia hết cho 3 => 9k+6 chia hết cho 3=> tổng của 3 số nguyên liên tiếp chia hết cho 3
b) Ta gọi 4 số nguyên liên tiếp đó là : 4k+1;4k+2;4k+3;4k+4
Ta có : ( 4k+1)+ ( 4k+2)+(4k+3)+(4k+4)
= 4k + 4k+4k+4k + ( 1+2+3+4)
= 16k+ 10
Ta có 16k chia hết cho 4 ; 10 ko chia hết cho 4 => 16k+10 ko chia hết cho 4 => tổng của 4 số nguyên liên tiếp k chia hết cho 4
c) Ta gọi 5 số nguyên liên tiếp đó là :5k+1;5k+2;5k+3;5k+4;5k+5
Ta có : ( 5k+1)+(5k+2)+(5k+3)+(5k+4)+(5k+5)
= 5k + 5k + 5k + 5k +5k + ( 1+2+3+4+5)
= 25k + 15
Ta có 25k chia hết cho 5 , 15 chia hết cho 5=> 25k+15 chia hết cho 5=> tổng của 5 số nguyên liên tiếp chia hết cho 5
Duyệt đi , chúc bạn hk giỏi
Chứng tỏ rằng:
a,Tích của ba số nguyên liên tiếp chia hết cho 3
b,Tích của năm số nguyên liên tiếp chia hết cho 5
c,Tích của bốn số nguyên liên tiếp ko chia hết cho 4
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!
\(CMR:\)
a,Trong hai số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 2
b,Trong ba số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c,Tổng của 3 số nguyên liên tiếp chia hết cho 3
d,Tổng của 5 số nguyên liên tiếp chia hết cho 5
e,Tổng của n số nguyên lẻ liên tiếp chia hết cho n
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
CMR:
a) Tích của 4 số tự nhiên liên tiếp chia hết cho 24
b)Tích của 4 số tự nhiên liên tiếp chia hết cho 384
c)Tích của 5 số tự nhiên liên tiếp chia hết cho 120
1/ Chứng minh rằng:
a) Tích hai số chẵn liên tiếp chia hết cho 8.
b) Tích ba số nguyên liên tiếp chia hết cho 6.
c) Tích năm số nguyên liên tiếp chia hết cho 120.
2/ Chứng minh rằng với mọi số nguyên m, n:
a) n3 + 11n chia hết cho 6.
b) mn (m2 - n2) chia hết cho 3.
c) n (n + 1) (2n + 1) chia hết cho 6.
3/ Cho m, n là hai số chính phương lẻ liên tiếp. Chứng minh rằng mn - m - n + 1 chia hết cho 192.
4/ Tích 3 số chẵn liên tiếp chia hết cho bao nhiêu?
5/ Cho p là số nguyên tố lớn hơn 3. Chứng minh: p2 - 1 chia hết cho 24.
6/ (HSG toàn quốc - 1970) Chứng minh rằng: n4 - 4n3 - 4n2 + 16n chia hết cho 3 với n là một số chẵn lớn hơn 4.
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.tích của 3 số nguyên liên tiếp chia hết cho 3.tích của 5 số nguyên liên tiếp chia hết cho 5.vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
(a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)12a chia hết cho 6.vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
sao dài yữ vậy trời???????????????????????????????????????
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
a) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 12
b) CMR tích của 5 số tự nhiên liên tiếp thì chia hết cho 60
c) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
Bài 1:
a) Chứng minh rằng tổng của 3 số nguyên liên tiếp chia hết cho 3 ,tổng của năm số ngyên liên tiếp chia hết cho 5
b) Tổng của hai số nguyên liên tiếp có chia hết cho 2 không? Tổng của bốn số nguyên liên tiếp có chia hết cho 4 không ?
Có thể rút ra kết luận nhận xét gì ?
Bài 1 :
a) Gọi 3 số nguyên liên tiếp là :\(n-1,n,n+1\)
\(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3
Gọi năm số nguyên liên tiếp là \(n-2,n-1,n,n+1,n+2\).Ta có :
\(\left(n+2\right)+\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=5n\)chia hết cho 5
b) Gọi 2 số nguyên liên tiếp là \(n,n+1\): Ta có
\(n+\left(n+1\right)=2n+1\)
Vì \(2n⋮2,\)\(1\)không chia hết cho \(2\)nên \(2n+1\)không chia hết cho 2
Vậy tổng hai số nguyên liên tiếp không chia hết cho 2
Gọi 4 số nguyên liên tiếp là ;\(n-1,n,n+1,n+2\).Ta có :
\(\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=4n+2\)
Vì \(4n⋮4,\)2 không chia hết cho 4 nên \(4n+2\)không chia hết cho 4
Nhận xét : Tổng của k só nguyên liên tiếp chia hết cho k khi và chỉ khi k lẻ
Chúc bạn học tốt ( -_- )
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!