cho A=1+1/2+1/3+1/4+...+1/2400-1 chứng minh rằng 200<A<400
Bài 1. Chứng minh rằng:
A = 2/3 . 4/5 . ... . 4998/4999 < 0,02
Bài 2. Chứng minh rằng:
a) 1/26 + 1/27 + ... + 1/56 = 99/50 - 97/49 + ... + 7/4 - 5/3 + 3/2 - 1
b) 1- 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 = 1/101 + 1/102 + ... + 1/200
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
Cho biểu thức P=1-1/2+1/3-1/4+...+1/199-1/200
a) chứng minh rằng P=1/101+/102+...+1/200
b)giải bài toán trên trong trường hợp tổng quát
a/P=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
=(1+1/3+1/5+1/7+...+1/199)-(1/2+1/4+1/6+...+1/200)
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/200)-2(1/2+1/4+1/6+...+1/200)
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/200)-(1+1/2+1/3+...+1/100)
=1/101+1/102+1/103+...+1/200
cho a=1/2*3/4*5/6*...*199/200.chứng minh rằng A^2<1/201
Chứng minh rằng luôn tồn tại số tự nhiên n để 1+1/2+/1/3+...+1/n>1000
Cho M = 1/101+/102+...+1/200. Chứng minh rằng : 5/8<M<3/4
Chứng minh rằng ; 1-1/2+1/3-1/4+...+1/199-1/200=1/101+1/102+000+1/200
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)
mình ko hiểu cánh làm của các bạn
ghi thật chi tiết cho mình hiểu được ko
1/tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho9 dư 5,chia 5 dư 3,chia 7 dư 4
2/cho S=2^1+2^+2^3+...+2^100
A,chứng minh rằng Schia hết cho 15
B,tìm số tận cùng của S
C,tính tổng S
3/chứng minh rằng
A,1-1/2+1/3-/4+...+1/199-/200=1/101+1/102+1/103+...+1/200
B,51/2*52/2*...*100/2=1*3*5*99
các bạn giúp mình nha!ai trả lời trước mình tick
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
cho A=1/2+2/3+..+199/200.chứng minh rằng A<1/201
Chứng minh rằng :
1-1/2+1/3-1/4+.......+1/199-1/200 = 1/101+ 1/102+.......+1/200
Cho A=1/1*4+1/3*8+1/5*12+...+1/99*200. Chứng minh rằng :A<5/12.