rút gọn biểu thức
\(\sqrt{4x^2+4x+1}\)\(\left(x\le\frac{1}{2}\right)\)
AI LÀM GIÚP MK VS
Rút gọn biểu thức
a)\(\sqrt{\left(x+1\right)^2}\)\(\left(x\ge-1\right)\)
b)\(\sqrt{\left(2x-1\right)^4}\)
c)\(\sqrt{\left(x-1\right)^2}\)\(\left(x>1\right)\)
d) \(\sqrt{x^2-4x+4}\)\(\left(x\ge2\right)\)
e)\(\sqrt{4x^2+4x+1}\)\(\left(x\le\frac{-1}{2}\right)\)
AI NGANG QUA GIÚP MK VS MK ĐANG RẤT CẦN ĐÁP ÁN CỦA BÀI NÀY :))
Rút gọn các biểu thức sau:
a)\(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\left(x< 2\right)\)
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
rút gon biểu thức sau A= \(\frac{8}{\sqrt{5}-1}-\left(2\sqrt{5}-1\right)\)
cho biểu thức B=\(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)với \(x\ge0\). rút gọn biểu thức A
Ai bt làm ơn giải giúp mk, mk đag rất cần
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
Cho biểu thức P = \(\left(\frac{4x-x^2}{1-4x^2}1-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)
a) Rút gọn P
b) Tìm x để P \(\le\)0
Cho biểu thức P = (4x−x21−4x2 1−x):(4x2−x41−4x2 +1)
a) Rút gọn P
= (x^21+4x^2-3x)/(x^41-1)
b) Tìm x để P =< 0
b) Tìm x để P ≤0
( ) thứ nhất bạn viết rõ ra hơn được không .-.
P = \(\left(\frac{4x-x^2}{1-4x^2}-x\right):\left(\frac{4x^2-x^{x4}}{1-4x^2}+1\right)\)
Cho biểu thức M = \(\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)
a/ Rút gọn biểu thức M
b/ Tìm giá trị của x để M=2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Rút gọn biểu thức
P= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}vs\left(x\ge1\right)\)
a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\) (ĐK : \(\forall x\in R\))
\(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)
* Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)
*Nếu x<2 => M=2-x-x-2=-2x
b,Để M=2\(\ne-4\)
=>M=-2x
=>-2x=-4
=>x=2
__________________________________________________________________________________________
P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
* Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
* Nếu x<2 =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
VẬY.......
Tk nha!
Rút gọn :
a) \(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\) (với \(\frac{1}{4}\le x\le\frac{1}{2}\)
b)\(\frac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\frac{1}{\sqrt{x-1}}\right)\)
Các bạn giải chi tiết giùm mk nhé . Xin cảm ơn
Bài 1 : Rút gọn A=\(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}\) + \(\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
Bài 2 : Cho biểu thức : P= \(\frac{x^2-4x-\left(x-1\right)\sqrt{x^2-9}+3}{x^2+4x-\left(x+1\right)\sqrt{x^2-9}+3}\)* \(\sqrt{\frac{x+3}{x-3}}\)với x>3
a> Rút gọn biểu thức P
b> Tìm giá trị lớn nhất của M= \(\frac{2}{P\left(x\right)}+\frac{1-x}{2016}\)
Cho biểu thức .
\(P=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)
Rút gọn
\(P=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{4x^2-x^4+1-4x^2}{1-4x^2}\)
\(=\frac{3x^3+3x}{1-4x^2}:\frac{1-x^4}{1-4x^2}\)
\(=\frac{3x\left(x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}\)
\(=\frac{3x}{1-x^2}\)
cho biểu thức :
A = \(\frac{\sqrt{x-\sqrt{4x-4}+\sqrt{x+4\sqrt{x-1}}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
Rút gọn A