tìm min A = x^2-3x+16 / x^2
b1 Cho \(a\ge4\) tìm min \(A=a+\frac{1}{a}\)
B2 cho a>0 tìm min \(B=\frac{3x^4+16}{x^3}\)
B3 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
b1 Cho x>4 tìm Min \(A=a+\frac{1}{a}\)
b2 Cho x>0 tìm Min \(B=\frac{3x^4+16}{x^3}\)
B3 0<x<2 tìm Max \(C=\frac{3}{1-x}+\frac{4}{x}\)
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
Ta có : \(B=\frac{3x^4}{x^3}+\frac{16}{x^3}=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\)
Áp dụng Bất đẳng thức Cauchy cho 4 số không âm ta có :
\(x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=4\sqrt[4]{16}=8\)
Đẳng thức xảy ra khi và chỉ khi \(x=2\)
Vậy \(Min_B=8\)khi \(x=2\)
Tìm MIN \(Q=\frac{3x^2+16}{x^3}\)
tìm min
A = \(x-2\sqrt{x-4}+3\)
B = \(\sqrt{3x^2-12x+16}+\sqrt{x^4-8x^2+17}\)
\(A=x-4-2\sqrt{x-4}+1+6=\left(\sqrt{x-4}-1\right)^2+6\ge6\)
dấu \(=\)xảy ra khi \(\sqrt{x-4}=1\Leftrightarrow x=5\)
\(B=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{4}+\sqrt{1}=3\)
Dấu \(=\)xảy ra khi \(x=2\)
tìm min p
p=\(x^2+xy+y^2-3x-3y+16\)
\(P=x^2-xy+y^2-3x-3y+16\)
\(2P=2x^2-2xy+2y^2-6x-6y+32\)
\(2P=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6x+9\right)+14\)
\(2P=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+14\ge14\)
Dấu "=" xảy ra tại \(x=y=3\)
Mình đoán đề bị sai,mình đã sửa rồi nhé !
Mục tiêu -1000 sp mong giúp đỡ
Đừng khóa nick nha olm
tìm Min A=x^2-2x+1999/x^2-3x+2 : x^3/x^2-3x^2+2x
1)TÌM H min = \(\sqrt{x^2+4}+\sqrt{x^2+8x+17}\)
2) tìm G min,max A=3x+x\(\sqrt{5-x^2}\)
3)tìm min,max B=\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
câu 1
ta có .....
lười viết Min - cốp xki nha
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)
nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )
1. Tìm Min
a, 3x^2 + 5x
b, (2x-1)^2 - x^2
2.Cho x+y=2. Tìm Min A = x^2+y^2
3. tìm Min A = x^2 + 6y^2 + 4xy - 2x - 8y + 2016
Tìm min A=|x^2+x+16|+|x^2+x-6|
\(\left|x^2+x+16\right|=x^2+\left|x+16\right|\)( vì \(x^2\ge0\))
\(\left|x^2+x-6\right|=x^2+\left|x-6\right|\)(vì \(x^2\ge0\))
\(\left|x+16\right|+\left|x-6\right|=\left|x+16\right|=\left|-x+6\right|\ge\left|22\right|=22\)
dấu = xảy ra khi và chỉ khi \(\left(x+16\right).\left(-x+6\right)\ge0\Rightarrow-16\le x\le6\)(1)
\(x^2\ge0\Rightarrow x^2+x^2\ge0\)
dấu = xảy ra khi và chỉ khi x=0 (2)
=> \(x^2+\left|x+16\right|+x^2+\left|x-6\right|\ge22+0=22\)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
=> x=0
Vậy min A=22 khi và chỉ khi x=0
p/s: ko chắc lắm, sai sót bỏ qua :))