chứng minh rằng
a) abba chia hết cho 11
b) aaabbb chia hết cho 37
Với a, b là các chữ số khác 0. Hãy chứng minh rằng:
a) abba chia hết cho 11 b) aaabbb chia hết cho 37
c) ababab chia hết cho 7 d) abab - baba : 9 với a>b
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) ⋮ 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) ⋮ 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) ⋮ 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) 9
nhanh giữu ba.... OxO!
chứng minh
abba chia hết 11
aaabbb chia hết 37
abab chia hết 1443
nếu ab = s nhân cd thì abcd chia hết cho 67
Cho a,b là các chữ số khác 0.Hãy chứng tỏ rằng:
a. abba chia hết cho 11 b.ababab chia hết cho 7 aaabbb chia hết cho 37 d.abab-baba chia hết cho 9 và 101
Câu a, b em xem trong mục câu hỏi tương tự nhé!
c) \(\overline{aaabbb}=\overline{aaa}.1000+\overline{bbb}=a.111.1000+b.111=\left(a.1000+b\right).111⋮37\)
vì 111=37.3 chia hết cho 37
d)
\(\overline{abab}-\overline{baba}=a.1000+b.100+a.10+b-b.1000-a.100-b.10-a=a.909-b.909\)
=909. (a-b)=9.101.(a-b) chia hết cho 9 và 101
a) abba chia hết cho 11
Ta có abba = 1000a + 100b + 10 b + a
= (1000a + a) + (100b +10b)
= 1001a + 110b
= 11.91.a + 11.10.b
= 11.(91a + 10b) \(⋮\)11
b) ababab \(⋮\)7
=> ababab = 100 000a + 10 000b + 1000a + 100b + 10a + b
= (100 000a + 1000a + 10a) + (10 000b + 100b + b)
= 101010a + 10101b
= 7.14430a + 7. 1443b
= 7.(14430a + 1443b) \(⋮\)7
c) aaabbb \(⋮\)37
Ta có : aaabbb = aaa000 + bbb
= 100000a + 10000a + 1000a + 100b + 10b + b
= (100000a + 10000a + 1000a) + (100b + 10b + b)
= 111000a + 111b
= 37. 30000a + 37.3b
= 37.(30000a + 3b)
d) abab - baba \(⋮\)9 và 101
Ta có :abab - baba \(⋮\)9 và 101 <=> abab - baba \(⋮\)9.101 <=> abab - baba \(⋮\)909
Lại có: abab - baba = (1000a + 100b + 10a + b) - (1000b + 100a + 10b + a)
= 1000a + 100b + 10a + b - 1000b - 100a - 10b - a
= (1000a + 10a - 100a - a ) + (100b + b - 1000b - 10b)
= a(1000 + 10 - 100 - 1) + b(100 + 1 - 1000 - 10
= a. 909 + b. (-909)
Vì \(\hept{\begin{cases}a.909⋮909\\b.\left(-909\right)⋮909\end{cases}}\)
=> \(a.909+b.\left(-909\right)⋮909\)
=> \(a.909+b.\left(-909\right)⋮101\times9\)
=> \(\hept{\begin{cases}a.909+b.\left(-909\right)⋮9\\a.909+b.\left(-909\right)⋮11\end{cases}}\)
chứng minh
abba chia hết 11
aaabbb chia hết 37
abab chia hết 1443
abba= 1000a + 100b + 10b+a = 1001a + 110b = 11.(91a+10b)
=> abba chia hết cho 11
mấy câu sau cũng tương tự thế thôi ^^
Ta có:
abba=a000+b00+b0+a=a.1001=b.110=a.91.11+b.10.11=(a.91+b.10).11 chia hết cho 11=>ĐPCM
aaabbb=aaa.1000+bbb=a.111000+b.111=a.3000.37+b.3.37=(a.3000+b.3).37 chia hết cho 37=>ĐPCM
Với ab=12=>abab=1212 không chia hết cho 1443=>vô lí, bạn xem lại đề.
chứng minh rằng
ab-ba chia hết cho 9 (với a>b)
abba chia hết cho 11
aaabbb chia hết cho 37
ababab chia hết cho 7
a,Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b,Chứng minh rằng ab + ba chia hết cho 11
c,Chưnhs minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 7
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
Với a,b là các chữ số khác 0. Chứng minh rằng
a)abba chia hết cho 11
b) aaabbb chia hết cho 37
c) ababab chia hết cho 7
d) abab - baba chia hết cho 9 và 101 với a>b
Mọi người giúp mình với nha mình tick cho
,a,abba=a.1000+b.100+b.10+a.1
=a.(1000+1)+b.(10+100)
=a.1001+b.110
=a.(11.91)+(11.10)\(⋮\)11
\(\Rightarrow\)abba\(⋮\)11(đpcm)
Chứng minh rằng:
a, ababab chia hét cho 7
b, aaabbb chia hết cho 37
ababab = ab.101010=ab.7.14430 chia hết cho 7 (trong tích có 1 thừa số chia hết cho 7)
=> ababab chia hết cho 7(đpcm)
Chứng minh rằng :
a) ab . (a + b) chia hết cho 2
b) ab + ba chia hết cho 11
c) aaa luôn chia hết cho 37
d) aaabbb luôn chia hết cho 37
e) ab - ba chia hết cho 9
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
a)
- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2
- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2
-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2
vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2
b)
Ta có:ab+ba
=10a+b+10b+a
=11a+11b
Ta thấy:11a chia hết cho 11,11b chia hết cho 11
Suy ra:ab + ba chia hết cho 11