Tìm x,y biết
\(4x^2+9y^2-12xy+4x-6y+2015\)
Tìm x,y biết \(4x^2+9y^2-12xy+4x-6y+2015\)
Tìm GTLN của M = -4x2-12xy-9y2-4x+6y+8
tìm x y biết 5x^2+9y^2-12xy+4x-48y+80
Đè như ri phải ko 5x2+9y2-12xy+24x-48y+80=0
Tìm x ,y
4x^2-12xy=-9y^2
\(4x^2-12xy=-9y^2\)
\(\Leftrightarrow4x^2-12xy+9y^2=0\)
\(\Leftrightarrow\left(2x\right)^2-2xy+\left(3y\right)^2=0\)
\(\Leftrightarrow\left(2x-3y\right)^2=0\)
\(\Leftrightarrow2x-3y=0\)
\(\Leftrightarrow2x=3y\)
\(\Leftrightarrow\frac{x}{y}=\frac{3}{2}\)
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Cho 7x2+9y2+12xy-4x-6y-15=0
Tìm GTNN, GTLN P=x-2y+5
Cho x, y thỏa mãn
\(7x^2+9y^2+12xy-4x-6y-15=0\)
Tìm Max; Min của S = 2x+3y+5
Tìm x, y, z biết
4x2 + 9y2 + 16z2 - 4x - 6y - 8z + 3 = 0
\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)
vay ................................................
Ta có :
4x2 + 9y2 + 16z2 - 4x - 6y - 8z + 3 = 0
( 2x ) 2 + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0
\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0
( 2x-1)2 + ( 3y -1 )2 + ( 4z - 1) 2 = 0
Mà ( 2x-1)2 \(\ge\)0 với mọi x
( 3y-1 )2 \(\ge0\)với mọi y
( 4z - 1) 2 \(\ge0\)với mọi z
nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)
Vậy x = 1/2 ; y = 1/3 ; z = 1/4
Câu 31:
b) Tìm x, y, z biết: \(4x^2-4x+9y^2-6y+16z^2-8z+3=0\)
\(4x^2-4x+9y^2-6y+16z^2-8z+3=0\)
\(\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8y+1\right)=0\)
\(\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(=>\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y-1\right)^2=0\\\left(4z-1\right)^2=0\end{cases}=>\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}}\)
Vậy...