tìm chỗ sai và sửa lại bài giải cho đúng:
\(\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow1=x-3\)
\(\Leftrightarrow x=4\)
Mệnh đề A sai, sửa :
\(x\in\left[1;3\right]\Leftrightarrow1\le x\le3\)
Mệnh đề C sai, sửa :
\(x\in\left(-\infty;3\right)\)
Mệnh đề D sai, sửa :
\(x\in[1;3)\Leftrightarrow1\le x< 3\)
\(\Rightarrow\)Mệnh đề B đúng
giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak:
+ ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
+ pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*)
Th1: \(\left\{{}\begin{matrix}\sqrt{x-1}-2< 0\\\sqrt{x-1}-3< 0\end{matrix}\right.\)
(*) \(\Leftrightarrow2-\sqrt{x-1}+3-\sqrt{x-1}=1\Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(N\right)\)
Th2: \(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\ge0\end{matrix}\right.\)
(*) \(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=1\Leftrightarrow2\sqrt{x-1}=6\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x=10\left(N\right)\)
Th3: \(\sqrt{x-1}-3< 0\le\sqrt{x-1}-2\)
(*) \(\Leftrightarrow\sqrt{x-1}-2+3-\sqrt{x-1}=1\Leftrightarrow1=1\left(đúng\right)\)
Kl: \(x\ge1\)
sai là đúng rồi , bạn thử thay x = 2 vô xem thấy liền ah
thứ nhất cả 3 trường hợp bạn chưa thể khẳng định nó đã thỏa mãn hay chưa vậy nên hãy tìm x cụ thể ra nháp như bài mình làm!thứ 2 là kết luận sai thứ 3 là ở đkxđ không cần dài dòng chỉ ghi kết luận cuối thôi
tại sao th3 lại sai zậy trời?????!!!!!!!!!!!!
giải giúp mk vs
Phát hiện lỗi sai nếu có và sửa lại cho đúng
\(\sqrt{x^2-1}=\sqrt{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x^2-1=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2=x\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x>1\\\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\end{matrix}\right.\)
Ví dụ đúng hay sai :
\(\frac{\left(x-9\right)^3}{2\left(9-x\right)}=\frac{\left(9-x\right)^2}{2}\)
giải :
\(\frac{-\left(9-x\right)^3}{2\left(9-x\right)}=-\frac{\left(9-x\right)^2}{2}\ne\frac{\left(9-x\right)^2}{2}\)
Cô ơi cô xem giúp em em giải đúng chưa cô ? cô ơi nếu sai chỗ nào thì cô chỉ lại em hiểu sai và sửa lại giúp em nhe cô. Em cám ơn cô. :)
sao lại có dấu (- ) dằng trước thế
VD đúng còn gì
k mk nha
VD sai nhé bạn. Chỉ bình phương mới viết được dưới dạng (a-b)^2 = (b-a)^2 (Có hiểu vì sao viết được như này ko?)
Thay "bình phương" bằng lũy thừa chẵn.
Thank you, idol ak!
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=13\\x^4+y^4+x^2y^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(x^2+y^2\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=13+xy\\\left[\left(x+y\right)^2-2xy\right]^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(13-xy\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\\left(x+y\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) hoặc x+y = -4
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\xy=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
Mọi người có thể giải thích từ dấu tương đương thứ 3 xuống 4. tại sao lại như vậy k?
bài 1: khoanh tròn vào chỗ sai trong các bài giải sau và sửa lại cho đúng
a) \(\left(2x+5\right)\left(5-2x\right)=2x^2-5^2\)
b) \(A=\left(x-5\right)^2+\left(2x+1\right)^2-2\left(2x^2+8.5\right)\)
\(A=\left(x^2-10x+25\right)+\left(2x^2+4x+1\right)-4x-17\)
\(A=x^2-6x+9\)
c) \(4x^2=36x-81\)
\(\Leftrightarrow4x^2-36=-81\)
\(\Leftrightarrow4x^2-36+81=0\)
\(\Leftrightarrow\left(2x-9\right)^2=0\)
\(\Leftrightarrow2x-9=0\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy S={4,5}
d)\(\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(\Leftrightarrow x^2-5-x-3\)
\(\Leftrightarrow x^2-5-x+3=0\)
\(\Leftrightarrow x^2-2-x=0\)
\(\Leftrightarrow x^2-2x+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\) x=0 hoặc x=2
vậy S={0;2}
\(\left(x^2-x+1\right)^4-6x^2\left(x^2-x+1\right)^2+5x^4=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2\right]^2-2\left(x^2-x+1\right)^2.3x^2+\left(3x^2\right)^2-4x^4=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2-3x^2\right]^2-\left(2x^2\right)^2=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2-3x^2+2x^2\right]\left[\left(x^2-x+1\right)^2-3x^2-2x^2\right]=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2-x^2\right]\left[\left(x^2-x+1\right)^2-5x^2\right]=0\)
\(\Leftrightarrow\left(x^2-x+1+x^2\right)\left(x^2-x+1-x^2\right)\left(x^4-2x^3-4x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2-x+1\right)\left(1-x\right)\left(x+1\right)\left(x^3-2x^2-x+1\right)=0\)
Mấy bạn cho mình gửi tạm nha, xíu mình nhờ CTV xóa :(
Cho đề \(\hept{\begin{cases}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}2\left(y^2+1\right)-\left(x^2+1\right)=2\\x\left(2x^2+1\right)-y\left(y^2+2\right)=0\end{cases}}\)
đặt \(a=y^2+1,b=x^2+1\)
\(\Leftrightarrow\hept{\begin{cases}2a-b=2\\x\left(2b-1\right)-y\left(a+1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}b=2a-2\\x\left(4a-5\right)-ya-y=0\end{cases}}}\Leftrightarrow\hept{\begin{cases}b=2a-2\\a=\frac{5x+y}{4x-y}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{2x+4y}{4x-y}\\a=\frac{5x+y}{4x-y}\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}y^2+1=\frac{5x+y}{4x-y}\left(1\right)\\x^2+1=\frac{2x+4y}{4x-y}\left(2\right)\end{cases}}\)
pt(1)-pt(2),ta dc:\(\left(x-y\right)\left(\frac{3}{4x-y}+x+y\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=y\left(3\right)\\\frac{3}{4x-y}+x+y=0\left(4\right)\end{cases}}\)
CM:PT (4) vô nghiệm giúp mình nha!Và xem lại nếu mình có lm sai hay thiếu đk j đó hãy chỉ giúp mình nha!!!Hoặc pt(4) có nghiệm thì hãy giải giúp mình luôn nha!Thanks
1.Cho biểu thức f(x)=(x2-4)(-x2+3x-2).Ta có:
\(A.f\left(x\right)>0\Leftrightarrow\orbr{\begin{cases}x< -2\\x>2\end{cases}}\)
\(B.f\left(x\right)< 0\Leftrightarrow\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)
\(C.f\left(x\right)>0\Leftrightarrow1< x< 2\)
\(D.f\left(x\right)< 0\Leftrightarrow-2< x< 2\)