Chứng minh rằng hiệu sau ko chia hết cho 2;
(10k+8k+6k)-(9k+7k+5k).K thuộc N*.
Các bạn giúp mình vs nhé, cảm ơn nhiều.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tớ có hai câu hỏi:
1. Chứng minh trong 4 số tự nhiên tùy ý có ít nhất 2 số có hiệu là hai số chia hết cho 3
2. Chứng minh rằng nếu một số abc ( ko phải là a.b.c đâu nhé) chia hết cho 37 thì bca và cab đều chia hết cho 37.
Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)
1. Giải
Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.
Khi chia : A1; A2; A3; A4 cho 3, ta được:
A1= 3 x k1 + r1 với: 0 ≥ r1 < 3
A2=3 x k2 + r2 với: 0 ≥ r2 < 3
A3=3 x k3 + r3 với: 0 ≥ r3 <3
A4=3 x k4 + r4 với: 0 ≥ r4 <3
Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.
Ta lấy: r1 = r23k2
=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.
=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.
1. Chứng minh rằng nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
2. a, Chứng minh rằng số có dạng abcabc chia hết cho 7,11,13
b, Áp dụng câu a ko thực hiện phép chia hãy cho biết trong các số sau số nào chia hết cho 7, số nào chia hết cho 11, số nào chia hết cho 13 .272283,236243,579572
3. Chứng minh rằng nếu ab=cd*3 thì abcd chia hết cho 43
4. Cho abc+deg chia hết cho 37 . Chứng minh abcdeg chia hết cho 37
giải ra giùm mình nhé
ai trả lời được mình k cho
A ,chứng minh rằng nếu hai số tự nhiên cùng chia cho 5 và có cùng số dư thì hiệu của chúng chia hết cho 5
B,cho 2 số tự nhiên a và b ko chia hết cho 3 khi chia a avf b cho 3 thì có 2 số dư khác nhau chứng minh rằng ( a +b )chia hết cho 3
mik cần rất rất là gấp mong các bạn giúp mik tik
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Bài 1:
a, Từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b, Tổng 1015+ 8 có chia hết cho 9 và 2 ko?
c, Tổng 102010 + 8 có chia hết cho 9 ko?
d, Tổng 102010+ 14 có chia hết cho 3 và 2 ko?
e, Hiệu 102010 - 4 có chia hết cho 3 ko?
Bài 2:
a, Chứng tỏ rằng ab(a+b) chia hết cho 2 (a,b thuộc N)
b, Chứng minh rằng ab + ba chia hết cho 11
c, Chứng minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 37
e, Chứng minh ab - ba chia hết cho 9 với a > b
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
1b. 1015 + 8 = 100...0 + 8 = 100...8 chia hết cho 2; 1 + 8 = 9 nên 1000...8 chia hết cho 9
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
GIẢI HẾT DÙM MÌNH NHA, AI GIẢI HẾT MÌNH TICK CHO! GHI RÕ RA HẾT LUN NHA!
1/tính tổng: S1= 1+2+3+4+....+999
2/khi chia số tự nhiên a cho 36 ta đc số dư là 12 hỏi a có chia hết cho 4 ko? 9 ko?
3/ tìm tập hợp các số tự nhiên N vừa chia hết cho 2, vừa chia hết cho 5 và 953<n<984
4/từ 1 đến 1000 có bn số chia hết cho 5?
5/ tổng 1015+8 có chia hết cho 9 và 2 ko?
6/tổng 102010+14 có chia hết cho 3 và 2 ko?
7/ hiệu 102010 - 4 có chia hết cho 3 ko?
8/a/ chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b/ chứng minh rằng ab+ba chia hết cho 11
c/ chứng minh rằng aaa luôn chia hết cho 37
d/ chứng minh ab-ba chia hết cho 9 với a>b
9/ tìm số tự nhiên x,y:
(x-1).y=42
xy=33
(x-1)(y+1)=44
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
TA tính như sau :ta tính số số hạng trước -->(999-1):1+1=999(SSH)
=>Tổng của dãy trên là :(1+999)x999:2=499500
chứng tỏ rằng trong 52 số tự nhiên bất kì bao giờ cũng có thể tìm được 2 số có tổng hoặc hiệu chia hết cho 100.
Chứng minh rằng với n thuộc số tự nhiên thì A= 21 mũ 2n+1 + 17 mũ 2n+1 + 15 ko chia hết cho 9
Cho 3 số a , b , c trong đó a , b là các số chia hết cho 5 dư 3 còn c là số chia 5 dư 2
a ) chứng minh rằng tổng hiệu sau a + b , b + c , a - b \(⋮\)5
b ) mỗi tổng hiệu sau a + b + c , a + b - c , a + c - b có chia hết cho 5 ko vì sao
Cho A = 4 + 22 + 23 + ........+ 220 . Chứng minh rằng : A có chia hết cho 128 ko , sau đó trả lời câu hỏi .Hỏi A có chia hết cho 128 ko ?
bạn có bị điên ko để tớ cho bạn đi bệnh viện
cho 101 số nguyên dương khác nhau ko vượt quá 300 chứng minh rằng trong 101 số đó tồn tại 2 số mà tổng của chúng chia hết cho hiệu chúng