Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Phương Uyên
Xem chi tiết
Oo Bản tình ca ác quỷ oO
13 tháng 6 2016 lúc 21:06

a) vì a<b => 2a<a + b ; c < d => 2c < c + d ; m<n => 2m< m + n

=> 2a + 2c + 2m = 2 (a + c + m) < ( a + b + c + m + n) 

=> \(\frac{a+c+m}{a+b+c+m+n}< \frac{1}{2}\left(đccm\right)\)

t i c k nha!! 4545654756678769780

Nguyễn Hưng Phát
13 tháng 6 2016 lúc 21:10

Ta có:\(1\le a;2\le b;3\le c;4\le d;5\le m;6\le n\)

\(\Rightarrow\hept{\begin{cases}a+c+m\ge1+3+5=9\\a+b+c+m+n=1+2+3+5+6=17\end{cases}}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+m+n}\ge\frac{9}{17}>\frac{9}{18}=\frac{1}{2}\)

b,Tương tự

Nguyễn Lê Thanh Hà
13 tháng 6 2016 lúc 21:16

Này Uyên,cậu còn ở đấy không vậy. Hà nè. Cậu hỏi đúng Ý tớ. Cô Nhân cho khó nhỉ.

  
Xem chi tiết

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)

zZz Cool Kid_new zZz
11 tháng 6 2019 lúc 19:01

Từ:\(\hept{\begin{cases}a< c\\c< d\\m< n\end{cases}}\Rightarrow a+c+m< c+d+n\)

\(\Rightarrow2\left(a+c+n\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

Darlingg🥝
11 tháng 6 2019 lúc 19:02

Tham khảo tại link nèy nhé bạn :https://olm.vn/hoi-dap/detail/84653011737.html

~Hok tốt~

Lê Đình Quân
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2020 lúc 22:15

\(VT\ge\frac{\left(a+b+c+d\right)^2}{a+b+c+d-4}\)

Đặt \(a+b+c+d-4=x>0\Rightarrow VT\ge\frac{\left(x+4\right)^2}{x}=\frac{x^2+8x+16}{x}\)

\(VT\ge x+\frac{16}{x}+8\ge2\sqrt{\frac{16x}{x}}+8=16\)

Dấu "=" xảy ra khi \(x=4\) hay \(a=b=c=d=2\)

Khách vãng lai đã xóa
lê nguyễn tấn phát
Xem chi tiết
soyeon_Tiểu bàng giải
13 tháng 7 2016 lúc 15:05

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

Đinh Văn Nguyên
13 tháng 7 2016 lúc 15:10

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

chu thi bich kieu
13 tháng 7 2016 lúc 15:13

Do a<b<c<d<m<n

\(\Rightarrow\)a+c+m<b+d+n

\(\Rightarrow\)2(a+c+m) < a+b+c+d+m+n

\(\Rightarrow\)\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

k cho mình nha

nguyễn thị hiền
Xem chi tiết
Ác Mộng
12 tháng 6 2015 lúc 16:51

Do a<b<c<d<m<n

=>a+c+m<b+d+n

=>2(a+c+m)<a+b+c+d+m+n

=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}

witch roses
12 tháng 6 2015 lúc 16:51

a<b=>2a<a+b

c<d=>2c<c+d

m<n=>2m<m+n

=>2(a+c+m)<a+b+c+d+m+n

=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}

Trung Hoàng
Xem chi tiết
Trí Tiên亗
25 tháng 2 2020 lúc 16:40

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

Khách vãng lai đã xóa
Thuong Huynh
Xem chi tiết
Thuong Huynh
28 tháng 8 2018 lúc 19:19

ai làm đk mình k cho

Không Tên
28 tháng 8 2018 lúc 19:24

Ta có:  a < b     =>    2a < a + b

           c < d      =>    2c < c + d

           m < n     =>    2m < m +n

suy ra:    2 ( a + c + m)  < a + b + c + d + m + n

=>   \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

Sắc màu
28 tháng 8 2018 lúc 19:24

Vì a < b

     c < d

     m < n

=> a + c + m < b + d + n

=> 2 ( a + c + m ) < b + d + n + a + c + m

=> \(\frac{a+c+m}{2\left(a+c+m\right)}\)\(>\)\(\frac{a+c+m}{a+b+c+d+m+n}\)

=> \(\frac{1}{2}>\frac{a+c+m}{a+b+c+d+m+n}\)

Trần bảo an
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
28 tháng 8 2019 lúc 19:42

\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

Nguyễn Thùy Trang
Xem chi tiết